

*lailw@sari.ac.cn

HIGH-SENSITIVITY RF DIRECT SAMPLING PROCESSOR **REDEFINES THE BEAM DIAGNOSTIC SYSTEM**

Authors: Longwei Lai*, Yimei Zhou, Jialan Pan, Xiaoqing Liu, Shanshan Cao, Ning Zhang, Jian Chen Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, P. R. China

•Abstract

TUP14

RF direct sampling and processing of beam signals has always been the goal pursued in beam diagnostic systems. Now it' s time to make it happen. For the first time, a high-sensitivity RF direct sampling processor has been developed for C-band cavity pickups in SHINE/SXFEL. It redefines the beam diagnostic system. There is no longer a need for complex analog down-conversion modules in traditional cavity BPM/BAM systems. In addition, the processor can simultaneously meet the signal processing needs of different cavities with a center frequency below 6 GHz. Obviously, the RF direct sampling processor greatly reduces the complexity and costs of the system, shows great versatility. Meanwhile, compared to the down-conversion electronics, this processor demonstrates much higher sensitivity (twice) due to a significant reduction in analog components. The processor also has a huge advantage in other beam diagnostics because of its wide bandwidth and high sampling rate, such as bunch-bybunch measurement and feedback system on synchrotron radiation facility. Now it's time to massively apply the RF direct sampling processor to promote the development of beam diagnostic technology.

•**RF direct sampling processor**

The processor is a 1U high standalone device, consists of an MPSoC Ultrascale+ FPGA carrier board, an ADC board, an FMC slot reserved for White Rabbit timing card.

8GB

DDR4

Osc.

FMC

HPC

FMC LPC

PLL

GPIO

LED

Parameters	value
Channels	4
ADC bits	14
ADC	9 GHz
Bandwidth	
Max ADC rate	2.6 GSPS
FPGA	Xilinx ZCU15EG
Clock	Ext./Int.
PL DDR4	8GB
PS DDR4	4GB
Trigger	WRN/Ext. SMA
	/Self/Period
Interlock	Lemo
Ethernet	2×RJ45
SFP	4, UDP&Aurora
Software	Linux/EPICS

•Cavity BPM/BAM signal processing

Down-conversion electronics VS RF direct sampling electronics

Performance comparison between IF sampling and RF direct sampling

Bunch-by-bunch TFB signal processing

RF direct sampled bunch 16 turn-by-turn oscillation during injection

Conclusion

We have developed an RF direct sampling processor to explore applications in beam diagnostics. The RF direct sampling processor samples signals without down-conversion. The measurement of amplitude and phase has higher sensitivity compared to downconversion electronics. The prototype RF direct sampling processor was used to measure the bunch-by-bunch tune value on the SSRF storage ring. The design of the RF direct sampling TFB processor is in progress.

IBIC2024, IHEP, BEIJING, CHINA