Developing a new Beam Position Monitor Electronics For HIPA, the PSI High Intensity Proton Accelerator

Boris Keil, Pascal Huber (PSI, Villigen, Switzerland)

Abstract

The High Intensity Proton Accelerator (HIPA) at PSI presently has a radio frequency (RF) beam position monitor (BPM) system based on 20-year-old Xilinx Virtex-2 Pro Systems-on-Chip (SoC), using application-specific integrated circuits (ASICS) for direct digital downconverters. For the planned upgrade of the electronics as well as for new HIPA projects, we started the development of a new HIPA BPM electronics, using a generic electronics platform called "DBPM3" that is already being used for SwissFEL and SLS 2.0 electron BPM systems. In this contribution, first test results of a DBPM3-based HIPA BPM electronics prototype are presented, including a comparison with the present electronics.

Machine Parameters

- Cockcroft-Walton Pre-accelerator: 870 keV CW
- 1st cyclotron: 72 MeV
- 2nd cyclotron: 590 MeV
- 2.4 mA max. beam current
- 1.4 MW max. CW beam power

BPM Pickups

• Two opposite coil with 1 winding as electrodes in beam pipe • Horizontal and vertical coil pairs at different longit. positions • Large beam pipe and geometry factors k = 37mm ... 43 mm • X = 37 mm * $(V_{right} - V_{left}) / (V_{right} + V_{left})$ • Y = 37 mm * $(V_{top} - V_{bottom}) / (V_{top} + V_{bottom})$

Digital Back-End with MultiProcessing System-on-Chip

- Xilinx/AMD Zyng UltraScale+ ("ZynqU+")
- 4-core 64-bit ARM CPU ("APU") running Linux/EPICS
- 2-core 32-bit ARM CPU ("RPU") running FreeRTOS (real-time DSP, ...)
- Two 72-bit DRAM banks (one for Linux, one for ADC realtime data stream)
- Already used for SwissFEL cavity BPMs and SLS 2.0 button BPMs

HIPA DBPM3 RF Front-End (RFFE) *Electronics*

Digital back-end with MPSoC, DRAM, generic clocking (accepts 50-500 MHz ref clocks of all PSI accelerators), ...

HIPA DBPM3 Performance

Comparison with present 20'-year old "pDBPM1" system:

- Lower noise at high beam current (better ADC, crossbar switch, more DDC bits)
- Similar noise at lower beam current (-> thermal noise limit, not much to improve)
- Better at very low current (DBPM3 ADC locked to accelerator RF: Boxcar averaging of old system replaced by narrowband DDC)

- 101.26 MHz beam signal (1st harmonic, beam bunched at 50.63 MHz)
- 63dB gain range
- RF front-end (RFFE) with integrated ADC (ADS54J69: 2-channel 16-bit 500 MSamples/s, JESD204B **10Gbps** serial interface)
- ADC now runs @ ~495 MS/s
- Digital DownConverter (DDC) implemented by PSI on Zynq UltraScale+, reprogramming of decimation rate and bandwidth during operation with GUI
- **3 simultaneous data streams** (typ. 1 MSPS, 20 kSPS, 20 SPS)

HIPA: Three RF Front-End daughterboards per DBPM3 unit, 4 channels each. JESD204B 16-bit 500Msps ADC (ADS54J69) integrated on RFFE.

HIPA RFFE prototype: PCB layout identical to new SLS electron button BPM electronics, but some different components soldered.

Beam signal spectrum: 50.63 MHz and harmonics

HIPA RFFE Schematics

- Re-used PCB from SLS 2.0 electron BPM RFFE, but adapted frequency-dependent parts
- Prototype: Self-made compact 101.26 MHz bandpass to fit PCB footprint of SLS 500 MHz bandpass
- Final version: New PCB layout, maybe slower/cheaper ADC, commercial bandpass with larger footprint

Motivation

- Age of present system (~20 years)
 - Using Xilinx Virtex-2 Pro: Obsolete design tools
 - Obsolete hardware parts
 - Limited number of spares
- Need for additional BPMs
 - "IMPACT" project: Extension of HIPA facility for production of isotopes & high-intensity muon beam
- Present RF-front end (radiation-hard) in accelerator bunker (only ADC/back-end outside)
 - RFFEs activated, want to avoid dose rates for
 - personnel during maintenance
 - New DBPM3 electronics will be completely outside bunker, needs new RF cables

Summary & Outlook

- The present DBPM3 prototype hardware performance already meets HIPA requirements
- Next steps:
 - RFFE PCB redesign to fit COTS bandpass & optimize costs (ADC could be slower/cheaper, ...)
 - DBPM3 for smaller number of new BPMs (2027: First beam for new IMPACT project)
 - Replace all electronics & RF cables (2028+)