

SARI

Nondestructive beam energy measurement using RF cavity beam arrival time monitors

Shanshan Cao SARI BI Group 2024-09-12

Outline

■ Background

- \blacktriangleright Introduction
- \triangleright Motivation

■ Development of the BFT-BEM system

- \triangleright Principles
- Development
- System performance evaluation
- Discussion
- Conclusion

Introduction – SXFEL & SHINE

Shanghai Soft X-ray FEL Test Facility

2021

SXFEL: Shanghai Soft X-ray FEL User Facility

SHINE: Shanghai HIgh repetitioN rate XFEL and Extreme light facility

Key parameters

Introduction – *Why*

- Beam energy: one of the key parameters for FEL facilities
	- \blacktriangleright Beam energy determinate the radiation wavelength
	- \blacktriangleright The stability of beam energy determinate the stability of FEL radiation
- Accurate and precise beam energy measurement is crucial for the optimal performance of the facility
	- \blacktriangleright Used for radiation wavelength calibration
	- \blacktriangleright Used for **feedback** to stabilize the beam energy, maintain a constant output wavelength
	- \blacktriangleright An essential tool for the commissioning and acceptance of FEL facilities.

New demands from New facilities: e.g. SHINE

- \triangleright BC1@SHINE: 200 MeV to 500 MeV (R56=-61mm@200MeV, aperture $:$ 115mm \times 35mm)
- **A non-intercepting robust broad beam energy measurement system is necessary.**

Introduction – *How*

 \blacksquare Measuring the bunch/synchrotron radiation light position at the chicane is a commonly used method.

Synchrotron radiation monitor Chicane BPM

Fig.1 Synchrotron radiation monitor^[1-2] **Fig.2** Chicane beam position monitor^[3-4]

Intuitive and effective but expensive & complex

 \blacksquare SXFEL: a stripline-BPM was utilized at the 1st BC of LINAC used for energy monitoring and feedback.

 $d₁$

- \blacktriangleright Calibration of the initial position to obtain a more accurate measurement of beam position changes.
- \blacktriangleright Limited by the signal-to-noise ratio (SNR) of the electrode signal away from the beam(offset↑, SNR↓)
- \blacktriangleright Affected by the bunch profile inside the chicane

[1] Gerth C. Proceedings of DIPAC. 2007, 7. [2] Wilhelm A, Gerth C, Proceedings of DIPAC. 2009. [3] Lorbeer B, et al. Energy Beam Position Monitor Button Array Electronics for the European XFEL[J]. 2018 [4] Hacker K. Measuring the electron beam energy in a magnetic bunch compressor[R]. 2010.

Introduction – *How*

 Instead of measuring the beam position inside the chicane, can we determine the bunch energy by measuring certain parameters outside of the chicane?

Motivation

T. **Questions:**

- Can chicane-based beam flight time be used for beam energy measurement?
- \triangleright What is the performance like?
- Which method is preferable for nondestructive beam energy measurement: BPM or BFT?

Motivation:

- \triangleright Investigate this beam flight time-based beam energy measurement scheme
- \triangleright Establish an applicable system and evaluate the system performance
- \triangleright To learn and compare the two methods

Development of the BFT-BEM system

- \triangleright Fundamental principles
- \triangleright BEM system

Fundamental Principle

 \blacksquare With an approximation, the bunch flight time (BFT) and bunch position at the chicane can be expressed as:

 $\Delta E\!\sim\!\Delta t_{bc}=R_{56}\cdot\Delta E/E\beta c,\,\Delta x_{bc}=R_{16}\cdot\Delta E/E$

 \blacksquare Especially, given the bunch inclination, the relation between the beam energy and BFT can be determined:

$$
t_{fly} = \left(\sum_{i=1}^{4} l_i + \sum_{1}^{3} l_{i,i+1}\right) / \beta c \quad l_1 = \rho \cdot \theta
$$

$$
l_{12} = \frac{d_1}{\sin(\pi - \theta - \varphi)}
$$

$$
\sqrt{W(W + e_0)}
$$

 $cos(\alpha) + cos(\varphi) = L_b/\rho$ $\rho =$

ZcB

Analysis of BC1@SXFEL

Parameters of a chicane at SXFEL-UF

 Take the BC1@SXFEL-LINAC as an example, the relation between the BFT and beam energy is expected to be: (E=230MeV)

$$
\frac{\Delta t_{bc}}{\Delta E} = 0.696 \text{ ps/MeV}
$$

E Similarly, the relation between the beam position and beam energy is:

$$
\frac{\Delta x_{bc}}{\Delta E} = 1.52 \, mm/MeV
$$

System scheme

- \blacksquare The system comprises the following components:
	- **Two cavities (BAMs):** Coupling out RF signal carrying the information of beam arrival time;
	- **RF front-end electronics (RFFE):** RF signal conditioning including filtering, amplifying, and mixing, etc.;
	- **Signal processor electronics**: signal acquisition and processing, BAT extraction

Typical External-mixing scheme

BFT measurement -External-mixing

Variation of beam arrival times @ 100pC

- п Three upgraded BAMs system installed at SXFEL-UF's LINAC were tested.
- \blacksquare The measurement uncertainties of beam arrival time in short-term (about 10 min): **30 fs @ BAM01 (T1) 61 fs @ BAM02 (T2) 62 fs @ BAM03 (T3)**

■ The min. BFT rms. measurement uncertainty (T3-T2) = 10fs

Self-mixing scheme

Trigger $2 Hz$ 4729 MHz (RF) 44 MHz (IF) **DBPM Signal** 80 mm **RFFE** (ADC) processor 4685 MHz (LO) shielding wall 119 MHz $Clock@LO$ (*S*) $($ *S*) 24 22 21 22 23 18 16 14 \rightarrow Beam flight time measurement uncertainty = 13 fs (\hat{p}).04
 \hat{p} = 0.02
 \hat{p}
 \hat{p} = 0.02
 \hat{p} 22 20 $Minimum = 13$ fs gnal length = 336 ns BFT 3.5 -0.04 0.5 1.5 2° 2.5 $\overline{\mathbf{3}}$ 15 signal length (µs) Time (min)

- \blacktriangleright Best result of measurement uncertainty (RMS): 13 fs over 20 min;
- \blacktriangleright Beam jitter and temperature drift can be ignored in this case, thus this measurement uncertainty describes the system resolution;

- \triangleright Best result of measurement uncertainty (RMS) in shortterm: 38 fs over 20 min;
- ≻ Best result of measurement uncertainty (RMS) in longterm: 53 fs over 18 hours;
- \blacktriangleright Beam jitter, temperature- and humidity-drift, and vibration contribute to this phase measurement uncertainty;

GUI for BFT-BEM

A high-level graphic user interface (UI) for BFT-BEM has been designed and lab tested:

System performance evaluation

Beam test for evaluation

- \blacktriangleright A beam test is performed to verify the relation between the beam energy and beam flight time and evaluate the system performance.
- \blacktriangleright Two BAMs (BAM01 and BAM02) and a SBPM at LINAC are used.
- ➤ An analytical magnet and a profile behind BAM02 were utilized.
- \blacktriangleright Each adjusting the accelerating phase, the data of two BAMs, one SBPM and profile are recorded for multiple times.
- \blacktriangleright A total of 14 measurements are conducted.

Measurement of beam energy

- \triangleright The accelerating phase is gradually adjusted from -109° to -138°, the beam energy decreases from 238.53 MeV to 229.28 MeV;
- \triangleright The energy spread increases 0.07% to 0.55%
- \blacktriangleright Beam energy jitter: $0.02\% \sim 0.04\%$

Measurement of beam arrival time

- More than 16000 samples (over 2 hours) were obtained;
- The variation of two beam arrival times are totally different;

- \blacksquare Beam arrival time @BAM01:
	- \blacktriangleright A small variation

SARI

 \blacktriangleright peak-to-peak = **0.35 ps**;

- \blacksquare Beam arrival time @BAM02:
	- \blacktriangleright A large variation;
	- peak-to-peak = **6.5 ps**;

20

Relation between BFT and energy

 \triangleright A linear relation between the beam energy and beam flight time is also proved by the beam test:

$$
t_{BFT} = -k * E + b,
$$

\n $k = 0.692 \pm 0.018 \text{ ps/MeV}, b = 165.1 \pm 4.1$

Relation between beam energy and BFT

Relation between beam position and energy

 \triangleright A quadratic polynomial relation between the beam energy and beam position is obtained via the beam test:

 $x = k * E^2 + b * E + c$.

Analysis of BEM with BFT

Using above linear factor, the beam energy was measured with this system:

- For 1000 measurement (near 10min), the average energy measured by the profile is 236.78 MeV, the average energies by BFT-BEM and BPM-BEM are **236.71** MeV and **236.89** MeV, respectively.
- The energy jitters measured by BFT-BEM and BPM-BEM are **5.49e-4** and **3.45e-4**, respectively.
- The deviations compared to the PRF-BEM are **0.07 MeV** and **0.11 MeV**, respectively.

Analysis of BEM with BPM & BFT

- The beam energy measured by BFT has less deviation compared to the reference energy than the beam energy measured by BPM;
- However, the energy jitter obtained by BFT is larger than that measured by BPM;

Discussion

Discussion

Why is the relation between BP and BE nonlinear ?

- The Chicane BPM is ^a rectangular four-electrode strip-line beam position monitor.
- \triangleright As the beam offset increases, the relationship between the delta-over-sum and the beam position exhibits nonlinearity.
- Thus, the beam position obtained using the conventional delta-over-sum algorithm is smaller than the actual beam position;
- \triangleright By applying the nonlinear algorithm, the beam position offset is found to be 13.9 mm for a beam energy change of 9.25 MeV, the result is nearly consistent with the formula-based calculation.

SHINE

Comparison of the two methods

- $\overline{}$ The beam test results of the two methods have been summarized in the table below.
- \blacksquare Overall, both have their own merits:
	- For beam energies with **small variations** (e.g. <3 MeV), **the BPM-BEM** is more suitable due to its higher precision. (Beam position should be calibrated or have ^a stabilized position before the Chicane).
	- \blacksquare For beam energies with **larger variations**, the **BFT-BEM** method is preferable because of its **larger linear region** and better accuracy;

Conclusion

Conclusion

- ♦ The bunch energy system, based on RF cavity-based bunch arrival time monitors, has been developed at SXFEL-UF, and the beam test results have verified its capacity for beam energy measurement..
	- ⋗ A linear relationship between the beam energy and the beam flight time, as the beam travels through ^a magnetic chicane, is observed for energies ranging from 230 to 239 MeV.
	- ⋗ Formula:-0.696 ps/MeV beam test: -0.692 ps/MeV
	- ⋗ The system resolution should be better than 5.49e-4, linear range: over 9 MeV
- ♦ For beam energy with **larger variations (e.g. >3MeV)**, the **BFT-BEM** method is preferable.
- ♦ Next, we will continue to utilize valuable machine study time to learn the system's long-term stability and the impact of parameters such as bunch profile, bunch length, and energy spread on the measurements, and to further optimize the system.

Acknowledgement

Great appreciation to *Prof. Leng* for his valuable suggestions and support.

Grateful to my loveable colleagues (*Dr. Chen, Dr. Liu, Dr. Dong, Dr. Lai etc*.) for their help in the experiments. Many thanks also to the engineers at SXFEL-UF for their assistance in completing the tests.

Thank you!

FEE