

Nondestructive beam energy measurement using RF cavity beam arrival time monitors

Shanshan Cao SARI BI Group 2024-09-12

Outline

Background

- Introduction
- Motivation

Development of the BFT-BEM system

- Principles
- Development
- System performance evaluation
- Discussion
- Conclusion

Introduction – SXFEL & SHINE

Shanghai Soft X-ray FEL Test Facility

2021

SXFEL: Shanghai Soft X-ray FEL User Facility

SHINE: Shanghai HIgh repetitioN rate XFEL and Extreme light facility

Key parameters

Parameters	SXFEL-TF	SXFEL-UF	SHINE
Output Wavelength/nm	9	2 ~ 10/ 1.2 ~ 3	0.4-25 keV
Bunch charge/nC	0.5 ~ 1	0.2~ 0.5	0.01~0.3
Pulse length (FWHM)/ps	~0.5	0.03 - 1	0.015~4
Peak current/kA	~0.5	0.7	0.5~2.5
Max Rep. rate/Hz	10	50	1e6

Introduction – Why

- **Beam energy:** one of the key parameters for FEL facilities
 - Beam energy determinate the radiation wavelength
 - The stability of beam energy determinate the stability of FEL radiation
- Accurate and precise beam energy measurement is crucial for the optimal performance of the facility
 - Used for radiation wavelength calibration
 - Used for <u>feedback</u> to stabilize the beam energy, maintain a constant output wavelength
 - > An essential tool for the commissioning and acceptance of FEL facilities.
 - New demands from New facilities: e.g. SHINE
 - ➢ BC1@SHINE: 200 MeV to 500 MeV (R56=-61mm@200MeV, aperture: 115mm×35mm)
- A non-intercepting robust broad beam energy measurement system is necessary.

Introduction – How

Measuring the bunch/synchrotron radiation light position at the chicane is a commonly used method.

Synchrotron radiation monitor

Fig.1 Synchrotron radiation monitor^[1-2]

Intuitive and effective but expensive & complex

Chicane BPM

Fig.2 Chicane beam position monitor^[3-4]

■ SXFEL: a stripline-BPM was utilized at the 1st BC of LINAC used for energy monitoring and feedback.

d1

- Calibration of the initial position to obtain a more accurate measurement of beam position changes.
- Limited by the signal-to-noise ratio (SNR) of the electrode signal away from the beam(offset↑, SNR↓)
- Affected by the bunch profile inside the chicane

[1] Gerth C. Proceedings of DIPAC. 2007, 7.
 [2] Wilhelm A, Gerth C, Proceedings of DIPAC. 2009.
 [3] Lorbeer B, et al. Energy Beam Position Monitor Button Array Electronics for the European XFEL[J]. 2018
 [4] Hacker K. Measuring the electron beam energy in a magnetic bunch compressor[R]. 2010.

Introduction – How

Instead of measuring the beam position inside the chicane, can we determine the bunch energy by measuring certain parameters outside of the chicane?

Motivation

Questions:

- Can chicane-based beam flight time be used for beam energy measurement?
- What is the performance like?
- Which method is preferable for nondestructive beam energy measurement: BPM or BFT?

Motivation:

- Investigate this beam flight time-based beam energy measurement scheme
- Establish an applicable system and evaluate the system performance
- To learn and compare the two methods

Development of the BFT-BEM system

- Fundamental principles
- BEM system

Fundamental Principle

With an approximation, the bunch flight time (BFT) and bunch position at the chicane can be expressed as:

 $\Delta E \sim \Delta t_{bc} = R_{56} \cdot \Delta E / E \beta c, \ \Delta x_{bc} = R_{16} \cdot \Delta E / E$

Especially, given the bunch inclination, the relation between the beam energy and BFT can be determined:

$$t_{fly} = \left(\sum_{i=1}^{4} l_i + \sum_{1}^{3} l_{i,i+1}\right) / \beta c \qquad l_1 = \rho \cdot \theta$$
$$l_{12} = \frac{d_1}{\sin(\pi - \theta - \varphi)}$$
$$\cos(\alpha) + \cos(\varphi) = L_b / \rho \qquad \rho = \frac{\sqrt{W(W + e_0)}}{ZcB}$$

Analysis of BC1@SXFEL

Schematic of a chicane

Parameters of a chicane at SXFEL-UF

Symbol	Value	Unit
d_0	1.08	m
L _b	0.3	m
d_1	4.81	m
h_0	0.33	m
R56	48	mm
R 16	351	mm

Take the BC1@SXFEL-LINAC as an example, the relation between the BFT and beam energy is expected to be: (E=230MeV)

$$\frac{\Delta t_{bc}}{\Delta E} = \mathbf{0.696} \ ps/MeV$$

Similarly, the relation between the beam position and beam energy is:

$$\frac{\Delta x_{bc}}{\Delta E} = \mathbf{1.52} \ mm/MeV$$

System scheme

- The system comprises the following components:
 - > Two cavities (BAMs): Coupling out RF signal carrying the information of beam arrival time;
 - > **RF front-end electronics (RFFE):** RF signal conditioning including filtering, amplifying, and mixing, etc.;
 - Signal processor electronics: signal acquisition and processing, BAT extraction

Typical External-mixing scheme

BFT measurement -External-mixing

Variation of beam arrival times @ 100pC

- Three upgraded BAMs system installed at SXFEL-UF's LINAC were tested.
- The measurement uncertainties of beam arrival time in short-term (about 10 min):
 30 fs @ BAM01 (T1)
 61 fs @ BAM02 (T2)
 62 fs @ BAM03 (T3)

The min. BFT rms. measurement uncertainty (T3-T2) = 10fs

Self-mixing scheme

Short-distance measurement(~80mm) Trigger 2 Hz 4729 MHz (RF) 44 MHz (IF) **DBPM** Signal 80 mm RFFE (ADC) processor 4685 MHz (LO) shielding wall 119 MHz Clock@LO measurement uncertainty (fs) 77 75 75 14 14 Beam flight time measurement uncertainty = 13 fs Beam flight time (ps) 0 007-Beam flight time (ps) Minimum = 13 fs gnal length = 336 ns BFT -0.04 0.5 1.5 2 2.5 3 3.5 2.0 signal length (µs) Time (min)

- Best result of measurement uncertainty (RMS):
 13 fs over 20 min;
- Beam jitter and temperature drift can be ignored in this case, thus this measurement uncertainty describes the system resolution;

- Best result of measurement uncertainty (RMS) in shortterm: 38 fs over 20 min;
- Best result of measurement uncertainty (RMS) in longterm: 53 fs over 18 hours;
- Beam jitter, temperature- and humidity-drift, and vibration contribute to this phase measurement uncertainty;

GUI for BFT-BEM

■ A high-level graphic user interface (UI) for BFT-BEM has been designed and lab tested:

System performance evaluation

Beam test for evaluation

- A beam test is performed to verify the relation between the beam energy and beam flight time and evaluate the system performance.
- ➤ Two BAMs (BAM01 and BAM02) and a SBPM at LINAC are used.
- > An analytical magnet and a profile behind BAM02 were utilized.
- Each adjusting the accelerating phase, the data of two BAMs, one SBPM and profile are recorded for multiple times.
- A total of 14 measurements are conducted.

Measurement of beam energy

- The accelerating phase is gradually adjusted from -109° to -138°, the beam energy decreases from 238.53 MeV to 229.28 MeV;
- ➤ The energy spread increases 0.07% to 0.55%
- ➢ Beam energy jitter: 0.02% ~ 0.04%

Meas. No.	Acc. Phase/°	Energy/MeV	Energy spread/%	Beam iitter
1	-109	238.53	0.07	0.03%
2	-113	238.40	~	~
3	-118	237.62	0.18	0.03%
4	-120	237.24	0.20	0.02%
5	-121	236.99	0.23	0.02%
6	-123	236.40	0.26	0.04%
7	-123.5	236.11	0.27	0.03%
8	-124	235.97	0.28	0.03%
9	-125	235.67	~	~
10	-126	235.30	~	~
11	-128	234.46	~	~
12	-130	233.66	0.40	0.03%
13	-132	232.57	0.44	0.03%
14	-138	229.28	0.55	0.03%

Measurement of beam arrival time

- More than 16000 samples (over 2 hours) were obtained;
- The variation of two beam arrival times are totally different;

- Beam arrival time @BAM01:
 - A small variation
 - peak-to-peak = 0.35 ps;

- Beam arrival time @BAM02:
 - ➤ A large variation;
 - peak-to-peak = 6.5 ps;

Relation between BFT and energy

A linear relation between the beam energy and beam flight time is also proved by the beam test:

$$t_{BFT} = -k * E + b$$
,
 $k = 0.692 \pm 0.018$ ps/MeV, $b = 165.1 \pm 4.1$

Relation between beam energy and BFT

Meas. No.	ACC. PHASE/°	BFT/ps	Mea. Uncertainty/fs
1	-109	-0.001	71
2	-113	0.106	84
3	-118	0.491	73
4	-120	0.634	72
5	-121	0.846	72
6	-123	1.320	81
7	-123.5	1.498	75
8	-124	1.553	86
9	-125	1.772	68
10	-126	2.062	64
11	-128	2.630	70
12	-130	3.234	67
13	-132	3.893	80
14	-138	6.300	88

Relation between beam position and energy

A quadratic polynomial relation between the beam energy and beam position is obtained via the beam test:

 $x = k * E^2 + b * E + c.$

 $k = 0.09 \pm 0.01 \ mm/MeV^2$, $b = -40.64 \pm 3.45 \ mm/MeV$, $c = 4626 \pm 404 \ mm$

Analysis of BEM with BFT

Using above linear factor, the beam energy was measured with this system:

- For 1000 measurement (near 10min), the average energy measured by the profile is 236.78 MeV, the average energies by BFT-BEM and BPM-BEM are 236.71 MeV and 236.89 MeV, respectively.
- The energy jitters measured by BFT-BEM and BPM-BEM are 5.49e-4 and 3.45e-4, respectively.
- The deviations compared to the PRF-BEM are 0.07 MeV and 0.11 MeV, respectively.

Analysis of BEM with BPM & BFT

- The beam energy measured by BFT has less deviation compared to the reference energy than the beam energy measured by BPM;
- > However, the energy jitter obtained by BFT is larger than that measured by BPM;

Discussion

Discussion

Why is the relation between BP and BE nonlinear ?

- > The Chicane BPM is a rectangular four-electrode strip-line beam position monitor.
- As the beam offset increases, the relationship between the delta-over-sum and the beam position exhibits nonlinearity.
- Thus, the beam position obtained using the conventional delta-over-sum algorithm is smaller than the actual beam position;
- By applying the nonlinear algorithm, the beam position offset is found to be 13.9 mm for a beam energy change of 9.25 MeV, the result is nearly consistent with the formula-based calculation.

SHINE

Comparison of the two methods

- The beam test results of the two methods have been summarized in the table below.
- Overall, both have their own merits:
 - For beam energies with small variations (e.g. <3 MeV), the BPM-BEM is more suitable due to its higher precision. (Beam position should be calibrated or have a stabilized position before the Chicane).</p>
 - For beam energies with larger variations, the BFT-BEM method is preferable because of its larger linear region and better accuracy;

Methods	BEM@BFT		BEM@BPM	
Analytic @230MeV	Linear	0.696 ps/MeV	Linear	1.52 mm/MeV
Beam test@230MeV	Linear	0.692 ps/MeV	quadratic polynomial	(0.09, -40.64) -> 1.76mm
Range @ $\Delta E = 9.25 MeV$	Analytic	6.44 ps	Analytic	14.06 mm
	Beam test	6.34 ps	Beam test	9.33 mm -> 13.9mm
Energy@237.78MeV	236.71 MeV	0.07 MeV	236.89 MeV	0.11 MeV
Energy jitter	0.13 MeV	5.49e-4	0.08MeV	3.45e-4
SHINE				

Conclusion

Conclusion

- The bunch energy system, based on RF cavity-based bunch arrival time monitors, has been developed at SXFEL-UF, and the beam test results have verified its capacity for beam energy measurement..
 - A linear relationship between the beam energy and the beam flight time, as the beam travels through a magnetic chicane, is observed for energies ranging from 230 to 239 MeV.
 - ► Formula:-0.696 ps/MeV beam test: -0.692 ps/MeV
 - > The system resolution should be better than 5.49e-4, linear range: over 9 MeV
- ◆ For beam energy with larger variations (e.g. >3MeV), the BFT-BEM method is preferable.
- Next, we will continue to utilize valuable machine study time to learn the system's long-term stability and the impact of parameters such as bunch profile, bunch length, and energy spread on the measurements, and to further optimize the system.

Acknowledgement

Great appreciation to *Prof. Leng* for his valuable suggestions and support.

Grateful to my loveable colleagues (*Dr. Chen, Dr. Liu, Dr. Dong, Dr. Lai etc.*) for their help in the experiments. Many thanks also to the engineers at SXFEL-UF for their assistance in completing the tests.

Thank you!