

Remote Sensing of Fast Beam Signals Using Electro-optical Modulators

A. Schlögelhofer, T. Lefèvre, T.E. Levens, S. Mazzoni

13th International Beam Instrumentation Conference, Sept. 9-13, 2024, Beijing, China

Outline

► Fast beam signals

Radio-over-fibre with electro-optical modulators

Experimental results

- o Continuous Wave
- o Spectral Decoding
- o Photonic Time Stretch
- ► Future perspectives

► Summary

Fast Beam Signals

"Fast" in this talk: broadband beam-induced signals in the order of tens of GHz

Why can this be difficult to measure?

- Signal transmission at high frequencies strongly affected by long transmission lines
- o High-speed digitizer needs to be close to signal source
- o Radiation hardness of high-frequency components

Could this be easier?

Development of a **radio-over-fibre** acquisition system to replace traditional read-out methods. Encoding and transport of RF signal using an optical carrier.

- \rightarrow Set up and test prototype with various beam-induced signals
 - Wall current monitor
 - o Coherent transition radiation
 - o Coherent Cherenkov diffraction radiation

Modulation due to Pockels effect

 linear variation of refractive index in response to an applied electric field

Electro-optic material

- Lithium niobate (LiNbO₃)
- o Gallium arsenide (GaAs)
- Indium phosphide (InP)
- Interference-based modulation of light
 - o laser light split into two arms, modulated, and recombined
 - o designed for continuous wave laser

Mach-Zehnder electro-optical modulator

Modulation due to Pockels effect

 linear variation of refractive index in response to an applied electric field

Electro-optic material

- Lithium niobate (LiNbO₃)
- o Gallium arsenide (GaAs)
- Indium phosphide (InP)
- Interference-based modulation of light
 - o laser light split into two arms, modulated, and recombined
 - o designed for continuous wave laser

Continuous wave laser measurement

Wall Current Monitor

Patrick Odier, "A New Wide Band Wall Current Monitor", 6th European Workshop on Beam Diagnostic and Instrumentation for Particle Accelerators (DIPAC 2003), Mainz, Germany, May 2003

	Design value
Low-frequency cutoff	10 kHz
High-frequency output	10 GHz

lab measurement (2002)

BW > 9.1 GHz

beam measurement (2002)

long cables \rightarrow

BW > 5.2 GHz

	Electron beam @ CLEAR				
В	Energy	200 MeV			
ea	Bunch length	5 ps (1σ)			
ă	Bunch charge	100 pC			
	Bunch spacing	667 ps			
	•				
10 GHz Wall Current Monitor					
	•				
<u> </u>	Operating wavelength	780 – 850 nm			
5	Max. optical input power	25 mW			
	Max. RF input power	28 dBm			
q	Connector type	2.92 mm (K)			
9	Electro optical bandwidth	> 25 GHz			
	$V_{\pi} RF @ 50 kHz$	3.5 – 4.5 V			

Wall Current Monitor

Single shot measurement:		
σ = 16 ps (BW approx. 13 GHz)		

13 GHz instead of 5.2 GHz

► 13 GHz ≪ 25 GHz of modulator BW

DAQ: Spectral Encoding

- Use a chirped laser pulse instead of a continuous wave laser
 - o increase power density of the laser

Encode the signals on the laser spectrum

- possibility to use laser spectrum also for decoding
- moving away from real-time sampling

Narrow optical spectrum

 keep reasonable performance of Mach-Zehnder interferometer

Continuous wave laser

Chirped laser pulse

Encoding

1 ps (1σ) Gaussian bunch

Bunch form factor

Coherent emission

$$rac{dW}{d\omega} = \left(rac{dW}{d\omega}
ight)_1 \, \cdot \, \left(N + Nig(N-1ig) \, |F(\omega)|^2
ight)$$

Transfer Function

Single pulse transfer function

DC extinction ratio

- Reduced due to optical bandwidth (7 nm FWHM)
- > 20.0 dB for CW laser (data sheet) down to 15.8 dB for pulsed laser
 - \rightarrow Lower modulation depth, less dynamic range

No DC bias feedback

- Modulator relaxed into quadrature bias point (50%)
- Long term stability over several hours
- Operational system would require bias feedback

Decoding?

Jitter:

- o no acquisition jitter present
- o only relative jitter between beam-induced signal and laser pulse remains

Temporal resolution:

- o limited by spectrometer resolution
- Setup: more complicated
 - \circ free space setup, alignment, intensified camera, ...

Jitter:

o added acquisition jitter from acquisition trigger

Temporal resolution:

- o limited by temporal stretching (available laser intensity)
- Setup: less complicated
 - long fibre + photodetector + oscilloscope

Decoding ✓

Time Conversion

Decoding Tim

(CERN)

Pulsed laser measurement

Input Signal Amplitude

Over-rotation:

- input signal amplitude too high
- modulation on next slope of transfer function
- strong distortion of signals
- **Condition to avoid over-rotation:**

 $V_{\rm RF} < V_{\pi} (\rm RF) / 2$

Input Signal Amplitude

CERN

35

30

25

20

15

10

 $\mathbf{5}$

0

Charge, pC

 $\mathbf{5}$

 2.2 ± 0.5 pC offset (2.1 ± 1.5 pC @ BCT)

15

10

 $\begin{array}{l} V_{\pi} = 28.89 \pm 0.89 \\ V_{0} = -11.97 \pm 0.89 \end{array}$

20 25 30 35

Average over 50 shots

→ Bandwidth \approx 1 / (2 τ) > 25 GHz

FWHM: *τ* < 19.6 ps

including various jitter contributions

BW > 25 GHz

Saturated single shot

BW > 45 GHz

→ Bandwidth \approx 0.35 / t_f > 50 GHz

Slew Rate $SR \ge 2\pi V(q) f_{max}$

 $\rightarrow f_{max} \ge$ 45 GHz

Current limitations

Coherent Cherenkov Diffraction Radiation

TUDC2 (IBIC 2024): Collette Pakuza et al., "The Study of High-frequency Pick-ups for Electron Beam Position Measurements in the AWAKE Common-beamline"

TUPO22 (IBIC 2023): Andreas Schlögelhofer et al., "Characterisation of Cherenkov Diffraction Radiation Using Electro-Optical Methods"

Photodetector + Oscilloscope			
Analog bandwidth	33 GHz	stretching	300 GHz
Sampling rate	256 GSa/s	x 9	2315 GSa/s

Modulator + Antenna	
Bandwidth limitation of current setup	45 GHz

Signal/Noise					
Single shot on photonic time stretch		> 10			
Low laser pulse energy	Lab	24.0 pJ			
provides margin for	Modulator	11.0 pJ			
significant improvement	Photodiode	0.3 pJ			

Future Perspectives

Using 1550 nm instead of 780 nm

- higher optical bandwidth of modulators (>50 GHz)
 - current setup is limited by the modulator (+ antenna)
- less attenuation in fibers for higher power density and longer stretching
 - first stretching: increase length of acquisition window
 - second stretching: slower readout electronics
- ▶ much bigger market (lasers, fibres, GaAs modulators, IQ modulators, ...)

Small footprint in large-scale machines

optical fibres as a more compact alternative to traditional cables

Radiation tolerance?

- entirely analog installation
- moving all electronic devices out of radiation areas
- radiation hardness of modulators and polarization-maintaining fibers to be evaluated

THAI2 (IBIC 2024): Christelle Hanoun et al, "Cost-effective Time-stretch Terahertz Electro-optic Recorders, by Using 1550 nm Laser Probes"

Summary

Photodetector with continuous wave laser

- straightforward system with no limit concerning the acquisition window
- o requires high average power and fast electronics

Spectral decoding with chirped laser pulse

- o zero acquisition jitter
- o typically a more complicated system to set up and operate

Photonic time stretch with chirped laser pulse

- o rather flexible, fibre-based system
- o better suited for high repetition rates
- current setup provides up to 45 GHz analog bandwidth
- Iong transmission lines of hundreds of meters
- overcome the challenges of transmitting beam-induced signals in the tens of GHz range

Continuous wave laser

Chirped laser pulse

