

Remote Sensing of Fast Beam Signals Using Electro-optical Modulators

A. Schlögelhofer, T. Lefèvre, T.E. Levens, S. Mazzoni

13th International Beam Instrumentation Conference, Sept. 9-13, 2024, Beijing, China

Outline

► **Fast beam signals**

► **Radio-over-fibre with electro-optical modulators**

► **Experimental results**

- o Continuous Wave
- o Spectral Decoding
- o Photonic Time Stretch

► **Future perspectives**

► **Summary**

Fast Beam Signals

"Fast" in this talk: broadband beam-induced signals in the order of **tens of GHz**

Why can this be difficult to measure?

- o Signal transmission at high frequencies strongly affected by long transmission lines
- o High-speed digitizer needs to be close to signal source
- o Radiation hardness of high-frequency components

Could this be easier?

Development of a **radio-over-fibre** acquisition system to replace traditional read-out methods. Encoding and transport of RF signal using an optical carrier.

- \rightarrow Set up and test prototype with various beam-induced signals
	- o Wall current monitor
	- o Coherent transition radiation
	- o Coherent Cherenkov diffraction radiation

► **Modulation due to Pockels effect**

- o linear variation of refractive index in response to an applied electric field
- ► **Electro-optic material**
	- \circ Lithium niobate (LiNbO₃)
	- o Gallium arsenide (GaAs)
	- \circ Indium phosphide (InP)
- ► **Interference-based modulation of light**
	- o laser light split into two arms, modulated, and recombined
	- o designed for continuous wave laser

Mach-Zehnder electro-optical modulator

► **Modulation due to Pockels effect**

o linear variation of refractive index in response to an applied electric field

► **Electro-optic material**

- \circ Lithium niobate (LiNbO₃)
- o Gallium arsenide (GaAs)
- o Indium phosphide (InP)
- ► **Interference-based modulation of light**
	- o laser light split into two arms, modulated, and recombined
	- o designed for continuous wave laser

ERN

Continuous wave laser measurement

Wall Current Monitor

Patrick Odier, *"A New Wide Band Wall Current Monitor", 6th European Workshop on Beam Diagnostic and Instrumentation for Particle Accelerators (DIPAC 2003), Mainz, Germany, May 2003*

lab measurement (2002)

BW > 9.1 GHz

beam measurement (2002)

long cables →

BW > 5.2 GHz

:
Ern

Wall Current Monitor

- ► **13 GHz instead of 5.2 GHz**
- ► **13 GHz** ≪ **25 GHz of modulator BW**

DAQ: Spectral Encoding

- ► **Use a chirped laser pulse instead of a continuous wave laser**
	- o increase power density of the laser

► **Encode the signals on the laser spectrum**

- o possibility to use laser spectrum also for decoding
- o moving away from real-time sampling

► **Narrow optical spectrum**

o keep reasonable performance of Mach-Zehnder interferometer

Continuous wave laser

Encoding

1 ps (1σ) Gaussian bunch Bunch form factor

Coherent emission

$$
\frac{dW}{d\omega} = \left(\frac{dW}{d\omega}\right)_1 \cdot \left(N + N(N-1) |F(\omega)|^2\right)
$$

Transfer Function

Single pulse transfer function

► **DC extinction ratio**

- o Reduced due to optical bandwidth (7 nm FWHM)
- \circ > 20.0 dB for CW laser (data sheet) down to 15.8 dB for pulsed laser
	- \rightarrow Lower modulation depth, less dynamic range

► **No DC bias feedback**

- o Modulator relaxed into quadrature bias point (50%)
- o Long term **stability over several hours**
- o Operational system would require bias feedback

Decoding ?

► **Jitter:**

- o no acquisition jitter present
- o only relative jitter between beam-induced signal and laser pulse remains

► **Temporal resolution:**

- o limited by spectrometer resolution
- **Setup:** more complicated
	- o free space setup, alignment, intensified camera, …

► **Jitter:**

o added acquisition jitter from acquisition trigger

► **Temporal resolution:**

- o limited by temporal stretching (available laser intensity)
- **Setup:** less complicated
	- \circ long fibre + photodetector + oscilloscope

Decoding √

Time Conversion

Decoding

Time Conversion

Pulsed laser measurement

Input Signal Amplitude

► **Over-rotation:**

- o input signal amplitude too high
- o modulation on next slope of transfer function
- o strong distortion of signals
- ► **Condition to avoid over-rotation:**

A. Schlögelhofer | Remote Sensing of Fast Beam Signals Using Electro-optical Modulators **26**

Input Signal Amplitude

50

Low bunch charge

High bunch charge

 $V_{\pi} = 28.89 \pm 0.89$
 $V_0 = -11.97 \pm 0.89$

25 30 35

560

 2.2 ± 0.5 pC offset
(2.1 \pm 1.5 pC @ BCT)

15

20

 5

Charge, pC

10

580

600

540

Average over 50 shots

BW > 25 GHz including various jitter contributions

600

580

→ Bandwidth ≈ 1 / *(2)* **> 25 GHz**

Saturated single shot

BW > 45 GHz

→ Bandwidth ≈ 0.35 / *t ^f* **> 50 GHz**

Slew Rate *SR* ≥ $2π$ *V(q)* f_{max}

 \rightarrow f_{max} \geq 45 GHz

Current limitations

Coherent Cherenkov Diffraction Radiation

TUDC2 (IBIC 2024): Collette Pakuza et al., *"The Study of High-frequency Pick-ups for Electron Beam Position Measurements in the AWAKE Common-beamline"*

TUPO22 (IBIC 2023): Andreas Schlögelhofer et al., *"Characterisation of Cherenkov Diffraction Radiation Using Electro-Optical Methods"*

Future Perspectives

Using 1550 nm instead of 780 nm

- ► higher optical bandwidth of modulators (>50 GHz)
	- **-** current setup is limited by the modulator (+ antenna)
- ► less attenuation in fibers for higher power density and longer stretching
	- **- first stretching:** increase length of acquisition window
	- **- second stretching:** slower readout electronics
- ► much bigger market (lasers, fibres, GaAs modulators, IQ modulators, …)

Small footprint in large-scale machines

► optical fibres as a more compact alternative to traditional cables

Radiation tolerance?

- \blacktriangleright entirely analog installation
- ► moving all electronic devices out of radiation areas
- ► radiation hardness of modulators and polarization-maintaining fibers to be evaluated

THAI2 (IBIC 2024): Christelle Hanoun et al, *"Cost-effective Time-stretch Terahertz Electro-optic Recorders, by Using 1550 nm Laser Probes"*

Photodetector with continuous wave laser

- o straightforward system with no limit concerning the acquisition window
- o requires high average power and fast electronics

Spectral decoding with chirped laser pulse

- o zero acquisition jitter
- o typically a more complicated system to set up and operate

Photonic time stretch with chirped laser pulse

- o rather flexible, fibre-based system
- o better suited for high repetition rates
- ► current setup provides up to 45 GHz analog bandwidth
- long transmission lines of hundreds of meters
- overcome the challenges of transmitting beam-induced signals in the tens of GHz range

Summary Continuous wave laser

Chirped laser pulse

