Modeling of the SIRIUS Fast Orbit Feedback Control Loop

IBIC 2024, Beijing

L. A. PELIKE¹, J. C. S. Carvalho¹, G. R. Cruz¹, A. F. Giachero¹, A. C. S. Oliveira¹, G. S. Ramirez¹, E. N. Rolim¹, F. H. de Sá¹, D. O. Tavares¹

¹Brazilian Synchrotron Light Laboratory (LNLS/CNPEM), Campinas, Brazil

PRESENTED BY: Lucas Antonio Pelike

September 11, 2024

PRESENTATION OUTLINE

- 1 [SIRIUS's FOFB Overview](#page-2-0)
- 2 [Control Loop Model](#page-3-0)
	- **[Basic Structure](#page-3-0)**
	- **[Plant](#page-4-0)**
	- [Controller](#page-6-0)
	- [Weighting matrices](#page-8-0)
- 3 [System Identification](#page-9-0)
	- **[Experiments](#page-9-0)**
	- **[Estimated Models](#page-10-0)**
- 4 [Model Evaluation](#page-11-0)
	- [General Method](#page-11-0)
	- [Open Loop](#page-16-0)
	- [Sensitivity](#page-17-0)
	- [MIMO](#page-19-0)

5 [Conclusion](#page-20-0)

6 [References](#page-21-0)

SIRIUS's FOFB Overview

- 4th generation light source located in Brazil
- Storage ring circumference of 518.4 m and 3 GeV electron beam with currently 100 mA (350 mA nominal)
- Fast Orbit Feedback System (FOFB) currently employs 78 Fast Correctors (156 coils) and 80 BPMs (160 BPM readings)
- Orbit disturbance attenuation from 0.1 Hz to 1 kHz
- Update rate of 48 kHz
- In operation for users since 2022
- See article published in ICALEPCS 2023 [\[1\]](#page-21-1) for technical details
- Objective: build a realistic computational model for the FOFB

Figure 1: SIRIUS light source

Control Loop Model - Basic Structure

Control Loop Model - Plant

Plant $G(z)$

Constructed as

$$
G(z) = [M | \eta] \begin{bmatrix} A_1(z) & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & A_n(z) & 0 \\ 0 & \cdots & 0 & H(z) \end{bmatrix}
$$

where M is the measured Orbit Response Matrix, η is the dispersion column, $A_i(z)$ is the model for the *i*-th corrector and $H(z)$ models the phase to orbit transfer function. The general format for $H(z)$ may be found in [\[2\]](#page-21-2).

Control Loop Model - Controller

Controller $C(z)$

Basic integral controller, given by

$$
C(z) = F(z) \left(K_I \frac{T_s z}{z - 1} \right) M_c
$$

where $F(z)$ is an optional shaping filter, T_s is the sample period, M_c is a correction matrix (obtained from the pseudoinverse of the Orbit Response Matrix M) and K_I is a gain matrix, currently defined as

$$
K_I = \left[\begin{array}{cccc} 0.120 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0.166 \end{array} \right]
$$

Control Loop Model - Weighting matrices

SYSTEM IDENTIFICATION - EXPERIMENTS

- Actuators' discrepancies motivated system identification experiments
- **PRBS** derived excitation signals
- Period of $N = 2⁷ 1 = 127$ steps and each applied step is composed of $d = 3$ equal applied samples
- 524 periods collected at a 48 kHz sampling rate and averaged to an equivalent sequence of a period with $Nd = 381$ samples
- Applied to correctors and measured at BPMs (zero gain applied to controller)

Figure 6: Frequency response of a subset of correctors [\[1\]](#page-21-1).

SYSTEM IDENTIFICATION - ESTIMATED MODELS

- Plant system obtained with fits from experimental data
- Follows basic structure of $[3]$
- AutoRegressive with eXogenous inputs (ARX) models
- 6th degree polynomials and delay of 2 samples
- Reported fits above 90%
- **Builds a system** $A_i(z)$ for the *i*-th corrector. In our case, $1 \le i \le 156$

Figure 7: ARX basic structure

■ Excited system's input with PRBS derived signals (parameters N and d)

Figure 8: Input and output signals x_k and y_k , at sample $k \in \Lambda$, where Λ is an indexing set with Nd elements.

- Excited system's input with PRBS derived signals (parameters N and d)
- Sequence of matrices obtained from system response and excitation signal

Figure 9: Building matrices E_k and S_k .

- Excited system's input with PRBS derived signals (parameters N and d)
- Sequence of matrices obtained from system response and excitation signal
- DFT of the projection to inputs and outputs of the obtained matrices

Figure 10: "FFT Cubes" obtained from joining the DFTs of input and output signals as columns.

- Excited system's input with PRBS derived signals (parameters N and d)
- Sequence of matrices obtained from system response and excitation signal
- **DFT** of the projection to inputs and outputs of the obtained matrices

Figure 11: Computation of matrix G'_{k} evaluated at frequency sample k

- \blacksquare Excited each corrector with PRBS derived signals (parameters N and d)
- Sequence of matrices obtained from system response and excitation signal
- DFT of the projection to inputs and outputs of the obtained matrices
- \blacksquare Multiplication by the pseudoinverse and subsequent SVD from the resulting product

Figure 12: SVD of G'_{k}

Model Evaluation - Open Loop

- Excited system's input with PRBS derived signals (parameters N and d)
- Sequence of matrices obtained from system response and excitation signal
- DFT of the projection to inputs and outputs of the obtained matrices
- \blacksquare Multiplication by the pseudoinverse and subsequent SVD from the resulting product
- Allows one to identify singular values in frequency

Figure 13: Open Loop singular values

Model Evaluation - Sensitivity (SISO)

- \blacksquare Essentially the same process as described
- Only one corrector and one BPM in the system
- System excitation at BPM readings
- \blacksquare Input signal with an amplitude of 5000 nm
- General agreement between model prediction and experimental data
- \blacksquare Crescent peak around 10 kHz is a consequence of the chosen d value

Figure 14: SISO singular values - horizontal

Model Evaluation - Sensitivity (SISO)

- **Essentially the same process as in the** MIMO case
- Only one corrector and one BPM in the system
- System excitation at BPM readings
- \blacksquare Input signal with an amplitude of 5000 nm
- General agreement between model prediction and experimental data
- **Crescent peak around 10 kHz is a** consequence of the chosen d value

Figure 15: SISO singular values - vertical

Model Evaluation - Sensitivity (MIMO)

- Simulated MIMO sensitivity using the model described
- Comparison between real model (unmatched correctors) and ideal (matched correctors)

Figure 16: Simulated sensitivity for the obtained model.

- The proposed model allows a realistic analysis of SIRIUS's Fast Orbit Feedback by, for example, capturing discrepancies between fast correctors
- Noise and disturbance inputs allow us to analyze sensitivity and noise rejection for a given configuration
- Robustness considerations could be made by studying gain increases of the model
- An easy-to-use evaluation technique for the model was implemented
- **Future work might be concentrated towards a better understanding of the interaction** with LLRF loop and optimization tests with shaping filters

REFERENCES

- [1] D.O. TAVARES ET AL. "COMMISSIONING AND OPTIMIZATION OF THE SIRIUS FAST ORBIT Feedback". In: Proc. 19th Int. Conf. Accel. Large Exp. Phys. Control Syst. (ICALEPCS'23) (Cape Town, South Africa, Oct. 9–13, 2023). International Conference on Accelerator and Large Experimental Physics Control Systems 19. JACoW Publishing, Geneva, Switzerland, Feb. 2024, pp. 123–130. isbn: 978-3-95450-238-7. doi: [10.18429/JACoW-ICALEPCS2023-MO3AO03](https://doi.org/10.18429/JACoW-ICALEPCS2023-MO3AO03). url: <https://jacow.org/icalepcs2023/papers/mo3ao03.pdf>.
- [2] P. Kallakuri et al. "Coupled bunch mode zero correction using orbit measurements and rf system phase feedback". In: Physical Review Accelerators and Beams 25.8 (Aug. 2022). issn: 2469-9888. doi: [10.1103/physrevaccelbeams.25.082801](https://doi.org/10.1103/physrevaccelbeams.25.082801). url: <https://www.osti.gov/biblio/1882009>.
- [3] D. O. TAVARES AND D. R. GROSSI. "SYSTEM IDENTIFICATION AND ROBUST CONTROL FOR THE LNLS UVX Fast Orbit Feedback". In: Proc. ICALEPCS'15 (Melbourne, Australia, Oct. 2015). JACoW Publishing, Geneva, Switzerland, 2015, pp. 30–33. doi: [10.18429/JACoW-ICALEPCS2015-MOC3O04](https://doi.org/10.18429/JACoW-ICALEPCS2015-MOC3O04). url: <https://jacow.org/ICALEPCS2015/papers/MOC3O04.pdf>.

