Based on

I.FAST Workshop 2024 on

Bunch-by-Bunch Feedback Systems and Related Beam Dynamics

T. Nakamura (KEK), for the workshop participants, and organizers: led by **Akira Mochihashi**,

the Karlsruhe Institute of Technology (KIT) / KARA

I.FAST Workshop 2024 on Bunch-by-Bunch Feedback Systems and Related Beam Dynamics

I.FAST: Innovation Fostering in Accelerator Science and Technology <u>https://ifast-project.eu</u> Great Opportunity for Information Exchange and Discussions with Various Machines / Labs / Universities / Companies What is **Bunch by bunch feedback ?**

Control: Damping, Anti-Damping, Excitation, ... Betatron (Transverse) Oscillation, Synchrotron (Longitudinal) Oscillation in Bunch-by-bunch base with bunch spacing down to 2ns (~500MHz)

Measurement of Beam Motion: Bunch-by-Bunch, Turn-by-Turn => Memory

What is **Bunch by bunch feedback ?**

Control : Damping, Anti-Damping, Excitation, ...

We start with

Damping of Beam Oscillation

Anti-Damping of Beam Oscillation

Anti-Damping (Positive Feedback)

Exponential Growth (Gain) and Tune Shift (Phase) with Feedback

= simulates Instability

~Frequency(tune) Shift by Feedback

https://indico.scc.kit.edu/event/3742/contributions/15394/ LHC

Excitation (Transfer function) of Beam Oscillation

Excitation of Beam Oscillation

Excitation of Beam Oscillation

Excitation by External Force

Amplitude to Equilibrium Value controlled by Force Strength

* Tune Measurement

Just One bunch is switched from feedback to excitation

small effect to users

* Cleaning of unnecessary bunches in filling gap(s)

Amplitude Dependent Tune Shift <= catching by Frequency Seep (ELETTRA)

AmplitudeSmall -> LargetuneHigh -> Low (Amplitude Dependent tune shift)Tune Freq.High -> Low <= Sweep with GOOD Direction</td>Excitation FreqLow -> High at Lower Betatron Sideband (ELETTRA)(tune shift direction is machine/tuning dependent)

Continued . . .

https://indico.scc.kit.edu/event/3742/contributions/15384/ (ELETTRA)

Excitation by External Force

* Control of Transverse Beam Size/Emittance (SOLEIL, DIAMOND)

Compared with x-y Coupling Control with Skew Q magnets

- Faster & Simpler Control (SOLEIL, DIAMOND)
- Independent Control for H and V
 - Coupling measurement : V-emittance / (excited H-emittance) (SOLEIL)
- Smaller effect to Off-Axis Injected Beam (DIAMOND)
- Applicable for Ultra-Low Horizontal Emittance beam

< but Beam size fluctuation is smaller with Skew Q (SOLEIL) >

Control of Vertical Beam Size/Emittance (SOLEIL, DIAMOND)

Control of Vertical Beam Size/Emittance (SOLEIL, DIAMOND)

Control of Vertical Emittance by Random Kick (SOLEIL)

Control of Vertical Emittance by Random Kick (SOLEIL)

https://indico.scc.kit.edu/event/3742/contributions/15385/ SOLEIL

Resonant Excitation at Synchrotron sideband of Betatron peak BESSY-II, DIAMOND

Before this

Tune Tracking Beam Response Measurement (BESSY)

https://indico.scc.kit.edu/event/3742/contributions/15192/ BESSY

Tune Tracking Beam Response Measurement (BESSY)

Tracking betatron freq. + excitation with shifted frequency

Tune Tracking Beam Response Measurement (BESSY)

Tracking Tune peak + Exciting Shifted Frequency

https://indico.scc.kit.edu/event/3742/contributions/15192/ BESSY

Tune Tracking Loop

https://indico.scc.kit.edu/event/3742/contributions/15192/ BESSY

Resonant Excitation at Synchrotron sideband of Betatron peak

Tune Tracking Loop

BESSY DIAMOND

https://indico.scc.kit.edu/event/3742/contributions/15192/ BESSY https://indico.scc.kit.edu/event/3742/contributions/15383/ DIAMOND

Resonant Excitation at Synchrotron sideband of Betatron peak

https://indico.scc.kit.edu/event/3742/contributions/15383/ DIAMOND

Resonant Excitation at **Synchrotron sideband of Betatron peak** Pulse Picking by **Resonant Excitation** (PPRE) (BESSY-II, DIAMOND)

Figure from (modified)

https://accelconf.web.cern.ch/ipac2023/pdf/MOPM037.pdf "INVESTIGATIONS INTO OPERATING PULSE PICKING BY RESONANT EXCITATION (PPRE) IN THE VERTICAL PLANE" (DIAMOND)

https://indico.scc.kit.edu/event/3742/contributions/15383/ DIAMOND

Resonant Excitation of Synchrotron Oscillation (KARA)

Longitudinal Excitation of Quadrupole motion with **2 x fs frequency** => Lengthen bunches

suppression of longitudinal instability

https://indico.scc.kit.edu/event/3742/contributions/15188/ KARA

Negative Feedback for Damping

Damping of Beam Oscillation

Negative Feedback (Damping)

Grow & Damp Experiment for investigate Instability

Switch OFF feedback => Growth by Instability => Switch ON feedback Instability Frequency => source impedance, …z

https://indico.scc.kit.edu/event/3742/contributions/15197/ KEK

Damping

* Fractional Tune ~ 0.5 (SuperKEKB) :

Two Transverse Feedback with 90 degree betatron phase difference

https://indico.scc.kit.edu/event/3742/contributions/15197/ KEK

Negative Feedback (Damping)

Fast Damping of Coherent motion of Stored beam excited at Injection

Fast damping prevents the process : Coherent Motion =(**Decoherence** by **tune spread in bunch**)=> Emittance produced by, such as Amplitude Dependent Tune Shift

Damping of Beam Oscillation

FIR filter: Sampling Rate (ex. 500MHz) Amp/kicker Response Compensation

Reduction of kick on neighboring bunches

Kick signal

Sampling Rate

Timing Jitter at Injection to **BESSY-II Booster**

Longitudinal Feedback is effective, however,

Timing jitter > Acceptance Longitudinal Feedback in some cases

* Cavity voltage Change by beam loading (multi-bunch at high current) Cured by change injection timing to dB/dt = 0

* Injection Beam Timing Jitter <=Transport= Energy jitter by Klystron jitter

=> Feedback is turned on ~3ms after injection

(after Jitter amplitude decreased)

Measurement with Feedback : Synchrotron Tune and Longitudinal Timing Shift

Unequal Beam loading by Main Cavity + (Harmonic Cavity) + Train + Gap => Variation of Cavity Voltage and Phase

Synchrotron Tune Shift and Bunch Timing Shift

Elettra 2.0 Stable phase of each bunch:

- Measurement with the LMBF front end by scanning of 360° the phase of the detector and recording the acquired signal averaged for each bunch
- The detector phase setting corresponding to the zero crossing for a given bunch is the stable phase of that bunch w.r.t. to the other bunches

https://indico.scc.kit.edu/event/3742/contributions/15384/ ELETTRA

Feedback Processor

Feedback Processors with RFSoC

https://indico.scc.kit.edu/event/3742/contributions/15604/ SLS

https://indico.scc.kit.edu/event/3742/contributions/15423/ PETRA

FAST CORRECTION KICKERS (SPring-8) for Reduction of Hori. and Vert. Motion of STORED BEAM at Injection

Saturation of Feedback : lower gain -> Instability 1

Horizontal : Bump orbit is not closed => Large Oscillation

Vertical : local X-Y coupling at Kickers

Horizontal Kick

t.r

Coupling

Fast Horizontal Kicker # One turn coil

Fast Vertical Kicker

C. Mitsuda, K. Fukami, K. Kobayashi, et al., <u>https://accelconf.web.cern.ch/IPAC2014/papers/mopro082.pd</u>f # C. Mitsuda, https://indico.cern.ch/event/635514/contributions/2660454/attachments/1513848/2370449/twiss_2017_v6_pub.pdf

Vertical motion

Bump Magnets rotation are optimized with Remotely Controlled Magnet Base* but **Coupling Changes run to run** *K. Fukami, et al., http://accelconf.web.cern.ch/e08/papers/wepc076.pdf

Simulation / Modeling

Longitudinal Simulation with Harmonic Cavity: the effect of Filling Gap (PSI)

"Basic system for SLS 2.0 shows very satisfying performance, even when taking into account all effects"

https://indico.scc.kit.edu/event/3742/contributions/15196/ SLS

Longitudinal Simulation (DAFNE) for coupled-bunch instability

- Cavity response
- Feedback

Analog Front-end (BPM, comb generator)

- \rightarrow (<code>ADC</code> -> Signal Processing in FPGA -> DAC)
 - \rightarrow Kicker Drive Circuits (SG, QPSK, Drive Signal x DAC (mixer))
 - → Cavity Kicker (including beam loading)

Beam Longitudinal Dynamics (BLonD) (CERN) (GSI, KIT, KEK, J-PARC, HIAF, Fermilab, Jefferson Lab,..) written in Python with Object Oriented form with C++/CUDA Impedance (simulation result, resonators, resistive-wall, constant Im(Z/n)) RF cavity + LLRF + Tuner RF noise/modulation

Application examples Injection Bunch-to-bucket capture Optimization of RF Power detuning, pre-detuning,

https://indico.scc.kit.edu/event/3742/contributions/15644/ CERN

Transverse Simulation for SOLEIL-II

Head-tail Single-bunch instabilities at high bunch current filling High Chromaticity ~5 is required => Non-Linear dynamical problem Strong feedback damping is necessary

With Harmonic Cavity : Chromaticity ~ 2 would be OK

Transverse Coupled-bunch Instability

High Chromaticity (~10) may cure => Non-Linear dynamical problem Feedback System for SOLEIL should be OK

Beam-ion instability

Increasing number of gaps is Expected to help

Proposal of Optimization of feedback response with Machine Learning (KARA)

Training of AI (reinforcement learning)?

Karlsruhe Pulse Taking Ultra-Fast Readout Electronics

One-shot Kick

https://indico.scc.kit.edu/event/3742/contributions/15188/ KARA

OtherTopics

• LHC

180° hybrid coupler

в

25ns Bunch spacing with 400MHz RF (40MHz bunch rate) Bunch length 1 – 1.5 ns 1-2e11 protons/bunch (1e9 protons/pilot bunch) 450 GeV => 7 TeV Filling 20min => energy ramping 20-40min => physics 12-18 hours Emittance growth by Transverse Feedback Noise Low noise Beam Position Monitor Front-end 년 년 0.12 New Generation, Very Low Noise BPM System for High Lumi LHC Target 0.10 Tate 9-tap analogue $\underbrace{\mathsf{ADC}}_{\Sigma I_0} \mathbf{\mathbf{Clk}}^{\mathsf{ADC}}$ 2023 growth 80'0 attn 2017 Local oscillator 90 $-\tau_2$ Identical circuitry for Σ Q-channel Digital board: 12x 120 Msps, 16 bit ADC Low noise, high IP3 amplifiers + fast RF switches $\Box_{\overline{n}} \ge$ emittance 40.0 emittance ADC step attn ττ Loca 20.0 el)0.0 el)0.0 oscillator 90° Identical circuitry for Δ Q-channel 2 0.00 +-0.00 ADC ΔI_3 RF receiver board 0.02 0.06 0.04 https://indico.scc.kit.edu/event/3742/contributions/15394/ Damper gain

https://indico.scc.kit.edu/event/3742/contributions/15394/ LHC

Bunch Pitch/Yaw Monitor Development and Proposal of its Feedback (KEK) USUAL button type BPM + SIMPLE Circuit of ~1.5GHz band

BPM O	Center of mass	(CM)	90-degre	e phase D	ifference
Signal	Pitch/Yaw ~ o	d(CM)/dt _	j at ALL	Frequency	/ Components
orginal	Half Synchro	otron Oscillatio	on Period	Pitch/Yaw Kicker //	Votage (ar.)
	Pitch Since Kick		$.2, V_{RF} = 108kV$	Pitch BPM2 MARINA MARINA	raw ¹
Pitch).025 - -0.05 -).075 -			ijijijijijijijijijijijijijijijijijijij	
	BPM raw ~ CM	50 100	150 20		₩A######
scale	~ 0 us	~ 80us	~ 180us	~ 220us	~ 240us
s duimi C	treak amera	$\mathcal{H}(\mathcal{M})$			Bi ti 0.
v ↓ v	Mostly CM	Large Pitch	Pitch reduced	Mostly CM	Pitch comes back
o Vertical	https://indico	https://indico.scc.kit.edu/event/3742/contributions/15184/ KEK			

Beam Study at KARA Collaboration of Workshop Attendants Beam Study : Collaboration of Workshop Attendants at KARA and Booster at KIT

- Establishment of Common Procedure of Commissioning of Feedback
- Emittance Control by Sideband resonant excitation (tune tracking)
- Longitudinal Feedback with Stripline Kicker at KARA Booster (53MeV)

Stripline (L=15cm) as "Drift tube" : worked

250MHz carrier kick: 4ns spacing bunches (Transverse BBF amp)

1.5 GHz carrier kick: 2ns spacing bunches (Longitudinal BBF amp)

Horizontal Kick at Dispersion => Change of Circumference : worked

Summary

I.FAST Workshop 2024 on Bunch-by-Bunch Feedback Systems and Related Beam Dynamics Variety of applications / analysis of bunch-by-bunch feedback

Damping

Cure and Study of beam instabilities

Anti-Damping

Landau Damping Measurement

Excitation

Tune Measurement

Bunch Cleaning

Tune Tracking Excitation

Emittance Control (center of mass, head-tail mode..)

Data taking

Bunch-by-bunch, turn-by-turn

Digital Processing Hardware / Scheme

RFSoC, FIR filters, …

Instrumentation, Theory, Simulation, new scheme, …

Thanks for the participants and organizers of the workshop