

Direct Measurement of the Longitudinal Emittance for a Proton Beam at Exit of a RFQ

Yong ZHANG

on behalf of the BSM-team

Institute of Modern Physics, Chinese Academy of Sciences

September 12th, 2024

THCC2

Direct Measurement of the Longitudinal Emittance for a Proton Beam at Exit of a Radio Frequency Quadrupole

IBIC2024, Beijing, China

OUTLINE

- Background of Measured longitudinal emittance in Hadron LINAC
- Development of Bunch shape monitor based on Feschenko's style in IMP
- Demonstrator of direct measurement of longitudinal emittance
- Measured longitudinal emittances in 9 conditions
- Conclusions

THCC2

Acknowledgements

Background of Measured Longitudinal Emittance in Hadron LINAC

R CLEAR OF BURG

Hadron LINAC beam : single pass, low- β , halo and high power

Matching beam and controlling the loss in hadron LINAC

Indirect method: cavity voltages	Longitudinal emittance method	al BEAM LINAC ENERG		MEASURED PARAMETERS	Direct or Indirect metohd	Phase space distribution	Resolution of phase length and energy spread distribution	Publish time	
synchronous	BPM sum	SNS (U.S.A.)	H ⁻ (180 MeV)	Bunch Lengh	indirect NO		RMS	2013	
phases	BPM sum	CPHS (China)	H (3 MeV)	Bunch Lengh	indirect	NO	RMS	2018	
BPM signals	BSM	Linac4 (CERN)	H.	Bunch Lengh	indirect	YES	10 ps	2016	
Direct method:	BSM	FRIB (U.S.A.)	lon	Bunch Lengh	indirect	YES	10 ps	2018	
BSM+ES	Rutherford spread	SARAF (Israeli)	н	Energy Spread	indirect	YES	20 kV	2009	
	BEM	SPIRAL2 (France)	lon	Bunch length	indirect	YES	47 ps	2016	
	Rutherford spread	GSI (Germany)	lon	Bunch length, Energy Spread	direct	YES	35 ps , 20 kV	2014	
	Acceptance		H⁻ (80 MeV)	Acceptance	indirect	YES	RMS	2008	
	Dipole+BSM	SNS (U.S.A)	H⁻ (2.1 MeV)	Energy Spread & Bunch length	direct	YES	10 ps, 0.1%	2018	

Direct Measurement of the Longitudinal Emittance for a Proton Beam at Exit of a Radio Frequency Quadrupole

Background of Measured Longitudinal Emittance in Hadron LINAC

Courtesy of Huan JIA

Background of Measured longitudinal emittance in Hadron LINAC

Development of Bunch shape monitor based on Feschenko's style in IMP

Demonstrator of direct measurement for longitudinal emittance

Measured longitudinal emittances in 9 conditions

Conclusions

Acknowledgements

5

Developed Bunch shape monitor based on Feschenko's style

Operation principle: coherent transformation of a temporal bunch structure into a spatial charge distribution of low SE through a transverse RFscanning

7. Secondary electron collector

THCC2

Cross section view of the developed BSM (HWR @325 MHz)

- Study the influences of key parameters on the high resolution
- How to get a good performance of RF-Deflector

6

THCC2

7

Performance of HWR RF-Deflector- the 1st version BSM

- Off-line test
- Thermal electrons emission
- RF deflector power on
- Check power signal and SEM signal

Performance of HWR RF-Deflector- the 2nd version BSM

- The improved RF deflector is more stable and easy to tune
- Improving loaded Q value from 300 to 900

€ € 100% - (> - -) - -

IPM

BSM

FC-4 BPM-2

FFC-2

Silicon

Help

DUMP

LEAF BD GUI (81.25 MHz, 500 keV/u, 500 euA)

🚰 LEAF_BD_Home_3.0.opi 🛛 🌌 emittance.opi 🞽 LEAF_SECR1.opi **Beam Diagnostics GUI** Beam Energy [BPM] Energy Spectrum [Silicon] Beam Energy Spread & BSM Transverse Emittance & Profile [FC] Longitudinal Bunch Length [FFC] Beam Position & Phase [BPM] DTL **Rebunch 2** Rebunc **RFQ** ACCT-1 FFC-1 FC-3 ACCT-2 BPM-1 Scraper FC-2 Profile FC-1 Emittance W 0.3 Setur ACCT-1 0.000

THCC2

BSM Para	meters
Wire HV	- 6.5 kV
Dipole I	3.75 A
Corrector X I	1 A
Corrector Y I	7.85 A
Collimator bias	- 500 V
Plate 1 bias	- 3500 V
Plate 2 bias	- 3700 V
SEM bias	- 1.4 kV
RF power	10 W

Bunch Shape Measurement System

Bunch Shape Measurement System

Rebuncher power on and off

RB1=0.51kW FWHM=536.2ps

FFC

Measured the phase distribution about 536 ps BSM Measured the phase distribution about 547 ps =(16 / 360*12.3 ns)

Keep an agreement

Background of Measured longitudinal emittance in Hadron LINAC

Developed Bunch shape monitor based on Feschenko's style in IMP CAS

Demonstrator of direct measurement of longitudinal emittance

Measured longitudinal emittances in 9 conditions

Conclusions

Acknowledgements

Demonstrator of direct measurement of longitudinal emittance

The entrance and exit edge angle of dipole are 26.5 °

Demonstrator of direct measurement of longitudinal emittance

waist - to - waist transfer matrix

 $M_{11} = -1$, $M_{12} \approx 0$, $M_{16} = D \approx -2$ m, L = 997.17 mm

$$\sigma_{\beta x} = M_{11} \cdot x + M_{12} \cdot x' = M_{11} \cdot x$$

x: Slit2-H width of 0.2 mm at the 1st waist

Resolution of momentum spread $\Delta p I p$

$$\delta = \frac{\Delta p}{p} = \frac{\sigma_{\beta x}}{D} = \frac{0.2 \text{mm}}{2\text{m}} = 1 \times 10^{-4} = 0.01\%$$
Resolution of BSM $\Delta \sigma_{\phi} I \sigma_{\phi, \text{full}}$

- Min. step of phase shifter is 0.7 $^\circ$ at 325 MHz
- Resolution of BSM is 20 ps / 500 ps (full length)
- Total resolution of BSM is about 1.25 $^\circ$ / 360 $^\circ$

Courtesy of Yuanshuai Qin and Duanyang Jia

Procedures of direct measurement of longitudinal emittance

- calibrate the phase and voltage of the buncher in the synchronous
- adjust the corrected magnet to keep beam position and energy constant
- use the wire of BSM in the 2st waist to measure the energy spread distribution $(\mathbf{3})$
- get the energy sweeping range and set one dipole current
- scan the phase value of BSM to measure the longitudinal bunch length (5)

Phase

Courtesy of Yuanshuai Qin and Wangsheng Wang

Slit2-V Slit2-H

Procedures of direct measurement of longitudinal emittance

Energy spread distribution using BSM wire in center and sweeping dipole H-profile by sweeping BSM wire when keeping dipole value in center

• Keep beam position and energy constant

check energy sweeping range

Conditions	H-profile center	FWHM of H-profile	Energy Center	FWHM of ES distri.	Δ w / w
Buncher off, Slit2-H out	-0.86 mm	13.418 mm	1.51839 MeV	24.328 keV	1.602%
Buncher on, Slit2-H out	-3.76 mm	8.035 mm	1.51563 MeV	13.899 keV	0.917%
Buncher off, Slit2-H in	5.69 mm	14.439 mm	1.52731 MeV	19.54 keV	1.279%
Buncher on, Slit2-H in	6.57 mm	9.091 mm	1.53351 MeV	16.01 keV	1.044%

Longitudinal emittance Measurement GUI

 "Phase Shifter" indicates the BSM phase scanning

•

- "WS" represents the wire of BSM in the center
- "SL" signifies the Slit2-H in the center.

Background of Measured longitudinal emittance in Hadron LINAC

Developed Bunch shape monitor based on Feschenko's style in IMP CAS

Demonstrator of direct measurement for longitudinal emittance

- Measured longitudinal emittances in 9 conditions
- Conclusions
- Acknowledgements

Longitudinal emittances with buncher voltage of 48.4 kV

THCC2

Direct Measurement of the Longitudinal Emittance for a Proton Beam at Exit of a Radio Frequency Quadrupole

Longitudinal emittances with buncher voltage of 96.3 kV

THCC2

Comparisons of Twiss parameters

Subtracting the background: variation in longitudinal emittance should not exceed 5% when subtracting background data exceeding 1%

Buncher paramters	Measured results			Simulated results			ε growth	MF
	3	α	β	3	α	β		
	π.mm.		mm /	π .mm.mr		mm /	%	%
	mrad		(π.mrad)	ad		$(\pi.mrad)$		
Power Off	0.2995	-4.8622	10.7768	0.3709	-2.7287	14.5981	-19	261
48.4 kV @ -90°	0.8857	-1.0586	1.8946	1.703263	-1.3271	4.5917	173	78
48.4 kV @ 90°	0.6354	-6.3765	12.1468	0.8074	-6.3386	26.7958	-21	445
96.3 kV @ -90°	0.2555	-4.7848	6.2706	0.5476	-5.7548	16.5634	-53	191
96.3 kV @ 90°	1.8203	-9.4312	16.2801	1.2391	-10.4577	40.9203	47	150
48.4 kV @ 0°	0.8994	-3.7317	7.6373	0.3699	-2.7216	14.4216	143	250
48.4 kV @ 180°	0.7002	-4.0026	10.1502	0.3725	-2.7817	14.5123	88	184
96.3 kV @ 0°	0.8984	-3.6575	7.0327	0.4002	-2.7957	14.5785	124	268
96.3 kV @ 180°	0.8511	-2.445	6.498	0.4077	-2.8073	14.3978	109	136

- Initial Twiss parameters from the output RFQ not corresponding to the measured beam
- Conduct a benchback simulation using the measured longitudinal emittance and Twiss data to refine the theoretical data

Courtesy of Yuanshuai Qin

Conclusions

- > We successfully develop a direct longitudinal emittance platform with high resolution for hadron LINAC
- Nine longitudinal emittance measurements were conducted for two buncher power values at four phase degrees, with the buncher power turned off, in a 1.5 MeV proton MEBT
- Using the waist-to-waist transfer matrix to enhance the resolution of the energy spread distribution
- The impact of transverse emittance on the energy spread is mitigated, now the resolution of ES is 0.07% since the dipole power supply control the minimum step is 0.2 A (0.20 / 320 A full range)
- > The developed BSM can achieve a resolution smaller than 20 ps of the full distribution of 500 ps at 162.5 MHz
- Directly measuring the longitudinal emittance, understanding the actual beam phase space distribution, conducting a bench-back simulation using the measured data

IMP longitudinal emittance group

- BD group: Ze Du, Lili Li, Jia Yin, Jianjun Su, Hongming Xie, Long Jing, Guangyu Zhu, Zhixue Li, Junxia Wu
- Linac physics group: Jia Huan, Yuanshuai Qin, Duanyang Jia, Wangsheng Wang, Weilong Chen, Weipin Dou, Chi Feng, Jie Zeng, Jianqiang Wu

Acknowledgements

- Thanks to Peter Ostroumov from FRIB for encouraging us to develop BSM
- Thanks to the SNS beam physics and instrumentation group: A. Aleksandrov, Sarah Cousineau, Brandon Cathey, Mike Plum, Andrei Shishlo, A. Zhukov for good discussions with Huan Jia
- Thanks to Peter Forck from GSI for his many helps when we did the first BSM experiment
- Sending our sincere regards to Fritz Caspers from CERN for always supporting us in many things
- Thank the committee and organizer for giving us an opportunity to introduce our work

Thank you for your attention