

13th International Beam Instrumentation Conference (IBIC2024)

Cost-effective time-stretch Terahertz electro-optic recorders, by using 1550 nm laser probes

 $\ddot{\cdot}$ Presented by: Christelle Hanoun¹

On behalf of: Serge Bielawski¹, Clément Evain¹, Marc Le Parquier¹, Eléonore Roussel¹, Christophe Szwaj¹ Jean-Blaise Brubach², Nicolas Hubert², Marie Labat², Jean-Paul Ricaud², Pascal Roy², Marie-Agnes Tordeux²

¹Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France ²Synchrotron SOLEIL, Synchrotron SOLEIL, Gif-sur-Yvette, France

September 12, 2024

Longitudinal electro-optic (EO) diagnostics in accelerators-based light sources

Longitudinal diagnostic tools needed in free-electron lasers and storage rings:

 \Box to measure and obtain information on electron bunches shapes (shape, envelope, carrier, ...) \Box study the dynamics of the electron bunches

Requirements and challenges:

- Single-shot measurements
- High repetition rates (MHz+) for a range of \blacktriangleright machines, e.g., EU-XFEL, SOLEIL, KARA, ELBE
	- ps/sub-ps temporal resolution
- Long THz signals

Main upgrade: Reduce the cost of high repetition rates single-shot THz detectors

Classical THz detection based on electro-optic sampling: scanning technique

- \triangleright The electric field modifies the birefringence of a crystal.
- \triangleright The THz field-induced birefringence is probed using a laser pulse.
- ➢ Varying the optical path between pump and probe pulses.
- ➢ Serial **scanning acquisition technique**.

Popular since the 80s: Near-field measurements Valdmanis, Mourou, Gabel, APL 41, 211, (1982)

THz single-shot detection technique capable of high repetition rates

Main idea: Achieve single-shot THz measurements using single-shot electro-optic sampling or spectral-encoding

→ **with the use of chirped laser pulses**

- $Chirp \sim linear ramp of frequency versus time$
- The full THz waveform is imprinted on a single optical probe pulse
- Measurement of the modulated signal using a spectrometer (grating +camera)

First demonstration for THz pulses (table-top exp.): Jiang and Zhang, Appl. Phys. Lett. 72, 1945 (1998) First demonstration in the accelerator context: bunch shapes at FELIX [Wilke et al., PRL 88, 124801 (2002)] Novel design for speed (<200 fs) and sensitivity (fibered system): [Bernd Steffen et al., Proc. DIPAC09 TUPB42 (2009), RSI 91, 045123 (2020)]

Single-shot electro-optic sampling using chirped laser pulses : spectral encoding and the acquisition rate challenge Speed of commercial

cameras limited to few hundreds of kHz, versus several MHz needed for accelerators

Single-shot electro-optic sampling using chirped laser pulses : spectral encoding and the acquisition rate challenge Speed of commercial

Alternative option: Single-shot electro-optic sampling with photonic time-stretch for high repetition rates

Main idea: Associate single-shot EO sampling with photonic time-stretch to reach MHz+ repetition rates [B. Jalali team, Electronics Letters 34, 1081 (1998)]

On the oscilloscope: replica of the THz pulse that is "temporally stretched" by a factor $M = 1 + L_2/L_1$

For example, when $L_1 = 16$ m and $L_2 = 4$ km \rightarrow M \approx 250.

 \rightarrow 4 GHz on the oscilloscope corresponds to 1 THz at the input.

Technique adapted for high repetition rates

First demonstration of THz time-stretch EO: [(PhLAM-SOLEIL coll.) Roussel et al. Sci. Rep. 5, 10330, 2015] KARA@KIT: Bielawski, S., Blomley, E., Brosi, M. et al. Scientific Reports 9, 10391 (2019). <https://doi.org/10.1038/s41598-019-45024-2> (ANR-DFG collaboration projet between PhLAM, SOLEIL and KIT)

Limitation of photonic time-stretch electro-optic detection

- \checkmark Single-shot measurements
- Easily reach MHz repetition rates $(1$ MHz @ SOLEIL, 2.7 MHz @ KARA)
- Allows to stretch **up to few ns (2-6 ns)** \rightarrow use of an oscilloscope with a 8-20 GHz bandwidth

Strategies for stretching more ? Decreasing costs and increasing record duration

More dispersion \rightarrow more stretch \rightarrow less required detection bandwidth (reduced cost)

Solutions for more dispersion:

- **Longer fiber ? (limited by losses)** (in practice, trade-off = dispersion giving \sim 3-6 dB loss)
- Increase laser bandwidth (nonlinear amp., etc.) [N. Couture, et al. Nat Commun 14, 2595 (2023)]
- Compensate losses using **Raman amplification** [D. Solli, et al. Nature Photon 2, 48–51 (2008)]
- Replace the fiber by **long Bragg gratings** (10 m) [M. Kobayashi, et al. Opt. Lett. 44, 163-166 (2019)]

THz coherent synchrotron radiation (CSR) pulses emitted at SOLEIL

EO recordings using 1550 nm vs 1030 nm probes for the same THz source

EO recordings using 1550 nm vs 1030 nm probes for the same THz source

Sensitivity of the EO detection setup

Sensitivity of the EO setup **at 1550 nm** wavelength is relatively **similar** to the setup **at 1030 nm** considering the bandwidth of the oscilloscope (same number of effective points).

Sensitivity of the EO setup at $1550 \text{ nm} = 6.5 \text{ V/cm}$ (or eq. ~5e-4 rad) with a 2.5 GHz BW ADC board

*Sensitivity defined as the input THz signal at the crystal, that would correspond to the detector noise.

> Noise-equivalent input THz signal

> > crysta

** Sensitivity scales as (rule of thumb)~1/sqrt(number of points), i.e., sqrt(oscilloscope BW)

HWP OWP

polar

beam

-splitter

adjustable

SM

Balanced

photodetector

variable

optical

delay line

circulator delay line

OCM

 $Circulator$

Stretched time (ns)

chirped
pulse

 \bigcap

 \overline{n}

aser (1550 nr

n m Pulse

Home-made

amplifier

Pola

rize-

Machine study

Performed a systematic series of measurements over the beam current

Machine study

Performed a systematic series of measurements over the beam current

CSR spectra: Study versus the current

Performed a systematic series of spectra measurements over the beam current

Conclusion

Development of a **time-stretch electro-optic setup at 1550 nm** at a considerably cost-affordable budget:

- **Stretch up to 35 ns** and measurements of THz signals with a **1 GHz BW oscilloscope**
- **With a cost reduction** from $> 100 \text{ kg}$ (in previous setups) to \sim 15 k€ (for a 3 GHz ADC board)

→ Allowing table-top experiments for time-domain THz spectroscopy **at lower costs** using **commercial devices** and **off-the shelf components**

Successful experiment at SOLEIL storage ring:

- Single-shot measurements of the **complete microbunching instability coherent synchrotron radiation**
- Performed **series of measurements at different beam currents,** over ~200e3 turns (200 ms), that can be now **compared with theory** and simulations

++ Many facilities routinely use a 1550 nm fs laser **"clock"** for synchronizing various equipments $\frac{1}{2}$ and the set of the set o

