Latest Achievements in Femtosecond Synchronisation of Large Facilities

Tutorial and Overview with New Results, Technical Details and Select Future Challenges

Sebastian Schulz on behalf of everybody involved! IBIC2024, Beijing, China 9-13 September 2024

HELMHOLTZ

Agenda

Latest Achievements ...

- Introduction and Basics
 - sources of timing jitter and drift
 - signal types and timescales
- Synchronisation Techniques
- Pulsed Optical Synchronisation
- System Performance Validation
 - self-contained
 - linac-based
 - user experiment
- Seismic Activity Influence
- Data-Driven Approaches
- Conclusion

Motivation

X-ray/Optical Pump-Probe Experiments with Femtosecond Temporal Resolution

• at FELs: disjunct sources

- **however:** data sorting can be difficult •
 - special timing requirements
 - 3rd independent source involved
 - low interaction rates / small cross sections / averaging detectors

probe = flash

shot pulses fs ← DS

precision: depends on experiment ideally: jitter < pulse durations

but: *a posteriori* data sorting!?

nature photonics

LETTERS PUBLISHED ONLINE: 17 FEBRUARY 2013 | DOI: 10.1038/NPHOTON.2013.

Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers

M. Harmand^{1†*}, R. Coffee², M. R. Bionta^{2,3}, M. Chollet², D. French², D. Zhu², D. M. Fritz², H. T. Lemke², N. Medvedev⁴, B. Ziaia^{4,5}, S. Toleikis¹ and M. Cammarata^{6*}

Recently, few-femtosecond pulses have become available at hard X-ray FEL facilities (wavelength-specific⁸ or impractical for hard X-ray free-electron lasers. Coupled with the available long facilities9,10) or require specific installations for a terahertz beam sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchroetween optical lasers and X-ray pulses continues to We report a 'measure-and ' approach, which chieves sub-10 fs root-mean-squared (r.m.s.) error measurement at hard X-ray FELs, far beyond the 100-200 fs r.m.s. jitter a rapid change in the free carrier density by photoionization limitations. This timing diagnostic, now routinely available at

line¹¹, which introduces significant complexity and cost. Induced ultrafast optical switching of bulk refractive indices i common cross-correlation technique12-14 that has been recently or soft X-ray FEL pulse excitation5,6,15-Absorption of a fraction of the X-ray beam intensity can produce subsequent cascade ionization18. This technique, pioneered at

Motivation

X-ray/Optical Pump-Probe Experiments with Femtosecond Temporal Resolution

• at FELs: disjunct sources

- however: data sorting can be difficult / impossible: no PAM!
 - special timing requirements
 - 3rd independent source involved
 - low interaction rates / small cross sections / averaging detectors

probe = flash

shot pulses fs 🔶 ps

precision: depends on experiment ideally: jitter < pulse durations

but: a posteriori data sorting!?

photonics

LETTERS PUBLISHED ONLINE: 17 FEBRUARY 2013 | DOI: 10.1038/NPHOTON.2013.11

Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers

M. Harmand¹¹⁺*, R. Coffee², M. R. Bionta^{2,3}, M. Chollet², D. French², D. Zhu², D. M. Fritz², H. T. Lemke², N. Medvedev⁴, B. Ziaja^{4,5}, S. Toleikis¹ and M. Cammarata⁶⁺

Recently, few-femtosecond pulses have become available at hard X-ray FEL facilities (wavelength-specific⁶ or impractical for sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchronization between optical lasers and X-ray pulses continues be challenging. We report a "measure-and-sort" approach, which achieves sub-10 fs root-mean-squared (rm.s.) error measureand X-ray FELs, far beyond the 100-200 fs rm.s. jitter imitations. This timing diagnostic, now routinely available at and busequent cascade ionization¹⁴. This technique, pipelse

time and length scales

Timing Jitter and Drift Considerations

duration

Overview

- short range 10 µs ... 1 ms
- mid range 1 ms ... 10 s
- long range 10 s ... days

- power supplies, EMI, electronics, materials properties
- acoustics, seismic activities, air/water flow, fans, ...
- thermal effects, humidity, air pressure, ...

Introduction and Basics

Sources of Timing Jitter: Beam

Electron Bunch Acceleration and Compression

RF acc. fields defines arrival a)

b)

 δC

 C_1

Tolerance \propto **Compression**

 $(\delta \phi_1 - \omega_{RF} \delta t_{ini})$

Phase & Init. arrival

Voltage

RF field control is critical

Compression factor C:

RF reference vs. PP-laser • closely locked

 $\tan(\phi_1)$

 $3 \tan(\phi_1)$

Sources of Timing Jitter: Distribution

Accelerator Straight Sections, Energy Stability, Ground Motion, ...

Sources of Timing Jitter and Drift: Laser System and Delivery

Example: Pump-Probe Laser System at SA1 Beamlines at EuXFEL

- common seeder & FE
- 20 Hz operation
- two separate NOPAs
 - SPB/SFX and FXE
- 800 nm (15 fs
- 1030 nm / sub-ps
- different pulse patterns

Set point	Repetition rate (MHz)	E1030 nm (mJ)	NOPA stages	E800 nm (mJ)
1	4.5	1	I+II	0.05
2	1.13	4	I+II	0.3
3	0.188	21	I+II+III	1.5
4	0.1	40	I+II+III	2.5

Sources of Timing Jitter and Drift: Laser System and Delivery

Example: Pump-Probe Laser System at SA1

- common seeder & FE
- 20 Hz operation
- two separate NOPAs
 - SPB/SFX and FXE
- 800 nm (15 fs
- 1030 nm / sub-ps
- different pulse patterns

Set point	Repetition rate (MHz)	E1030 nm (mJ)	NOPA stages	E800 nm (mJ)
1	4.5	1	I+II	0.05
2	1.13	4	I+II	0.3
3	0.188	21	I+II+III	1.5
4	0.1	40	I+II+III	2.5

long path lengths

• lab \rightarrow ILH \rightarrow experiment ~100 m

Influence of Air Condition on Laser Pulse Propagation Time

Ciddor's Equation - Around Nominal Parameters of 1550 nm, 45% RH, 101.325 kPa, 450 ppm

- temperature
- relative humidity
- air pressure
- CO₂ concentration

- 3.1 fs/m/K 0.04 fs/%/m
- -0.9 fs/mbar/m
- -0.5 as/ppm/m

1566 APPLIED OPTICS / Vol. 35, No. 9 / 20 March 1996

Refractive index of air: new equations for the visible and near infrared

Philip E. Ciddor

The precision of modern length interferometry and geodetic surveying far exceeds the accuracy, which is ultimately limited by the inadequacy of currently used equations for the refractive index of the atmosphere. I have critically reviewed recent research at the National Physical Laboratory, the International Bureau of Weights and Measures, and elsewhere that has led to revised formulas and data for the dispersion and density of the major components of the atmosphere. I have combined selected formulas from these sources to yield a set of equations that match recently reported measurements to within the experimental error, and that are expected to be reliable over very wide ranges of atmospheric parameters and wavelength.

Key words: Refractive index, atmospheric optics, geodesy, metrology, interferometry. @ 1996 Optical Society of America

1. Introduction

DES

An accurate knowledge of the refractive index of air is essential to precise length interferometry or geodetic surveying. Where overall uncertainties of approximately 1 part in 10^7 are sought, the refractive research. Some of these new results have been incorporated in a recent revision by Birch and Downs⁸ (corrected in Ref. 4), with greatly improved fits to the data at a wavelength of 633 nm. However, this study was restricted to conditions likely to occur in a

	Но	me Re	EERING offractive Inde cactive I Based	METRO ex of Air E ndex of A on Ciddor	Elastic	Tool Publicati	LBOX ons Dr	:			
Refractive Index of Air Cal	culator is a w	eb-based to	ool for calcula	ting the index of	of refractior	of air and	wavelen	gth of light	in air as a	a functi	on d
Refractive Index of Air Cal nput parameters, using the	l culator is a w Ciddor Equati	eb-based to on or a moo	ified version of the second se	ting the index of the Edlén Edlé	of refraction quation.	of air and	wavelen	gth of light	in air as a	a functio	on
Refractive Index of Air Cal	Ciddor Equati	eb-based to on or a mod In Ji Cuum V	ool for calcula lified version of ack A. Sto Vavelen Based	ting the index of of the Edlén Ed Refrac ine and Jay ingth and if on Ciddor	of refraction quation. Ction H. Zimr Ambie r Equati	of air and of Air nerman ent Co on	wavelen; r nditic	of light	in air as a	a functio	on
Refractive Index of Air Cal nput parameters, using the	Ciddor Equati	ieb-based to on or a moc In Ji cuum V	ool for calcula lified version of ack A. Sto Vavelen Based	ting the index of of the Edlén Ed Refrac one and Jay agth and on Ciddou	of refraction quation. Ction H. Zimr Ambie r Equati	of air and of Air nerman ent Co on	wavelen r nditic	gth of light	in air as a	a functio	on
Refractive Index of Air Cal nput parameters, using the Input Vacuum Wavelength:	Ciddor Equati Ciddor Equati	eb-based to on or a mod In J. Cuum V	ool for calcula liffed version of ack A. Sto Vavelen Based meters [nm] (ting the index of of the Edlén Ed f Refrac <i>ine and Jay</i> igth and <i>i on Ciddor</i>	of refraction quation. th. Zimr Ambie r Equati	of air and of Air nerman ent Co on	nditic	pth of light	in air as a	a functio	n
Refractive Index of Air Cal nput parameters, using the Input Vacuum Wavelength: Air Temperature:	Ciddor Equati Vac Amount 1550 23.5	eb-based to on or a moo In Ji cuum V	ool for calcula lified version of Idex of <i>ack A. Sto</i> Vavelen <i>Based</i> meters [nm] (ees Celsius (ting the index of of the Edlén Ed f Refrac <i>ine and Jay</i> igth and <i>i on Ciddoo</i> (300 to 1700) (40 to 100)	of refraction quation. Ction (H. Zimr Ambie r Equati	of air and of Air nerman ent Co on	nditic	ons	in air as a	a functio	on
Refractive Index of Air Cal nput parameters, using the Input Vacuum Wavelength: Air Temperature: Atmospheric Pressure:	Amount 1550 23.5 101.325	eb-based to on or a moo Ji Cuum V Nano Degre Kilopa	ool for calcula lified version of ack A. Sto Vavelen Based meters [nm] (ascals [kPa] (*	ting the index of of the Edlén Ed F Refrac one and Jay 1 gth and on Ciddor (300 to 1700) (40 to 100) 10 to 140)	of refraction quation. Th. Zimr Ambie r Equati	of air and of Ain merman ent Co on	wavelen; r nditic	ons	in air as a	a function	n
Refractive Index of Air Cal nput parameters, using the Input Vacuum Wavelength: Air Temperature: Atmospheric Pressure: Air Humidity:	Amount 1550 23.5 101.325 45	eb-based to on or a mod J. Cuum V Nano Degra Kilopa Relati	ool for calcula liffed version of Idex of <i>ack A. Sto</i> Vavelen <i>Based</i> meters [nm] (ascals [kPa] (* ive Humidity, I	ting the index of of the Edlén Ed F Refrac <i>ine and Jay</i> igth and <i>i on Ciddoo</i> (300 to 1700) (40 to 100) 10 to 140) Percent (0 to 10	of refraction quation. <i>t</i> H. Zimm Ambie <i>r</i> Equati 3 3 3 3 3 3 3 3	of air and of Air nerman ent Co on	nditic	pns	in air as a	a functi	on

Influence of Air Condition on Laser Pulse Propagation Time

Ciddor's Equation - Around Nominal Parameters of 1550 nm, 45% RH, 101.325 kPa, 450 ppm

 temperature 	3.1 fs/m/K
 relative humidity 	0.04 fs/%/m
air pressure	-0.9 fs/mbar/m
 CO₂ concentration 	–0.5 as/ppm/m

1566 APPLIED OPTICS / Vol. 35, No. 9 / 20 March 1996

Refractive index of air: new equations for the visible and near infrared

Philip E. Ciddor

The precision of modern length interferometry and geodetic surveying far exceeds the accuracy, which is ultimately limited by the inadequacy of currently used equations for the refractive index of the atmosphere. I have critically reviewed recent research at the National Physical Laboratory, the International Bureau of Weights and Measures, and elsewhere that has led to revised formulas and data for the dispersion and density of the major components of the atmosphere. I have combined selected formulas from these sources to yield a set of equations that match recently reported measurements to within the experimental error, and that are expected to be reliable over very wide ranges of atmospheric parameters and wavelength.

Key words: Refractive index, atmospheric optics, geodesy, metrology, interferometry. © 1996 Optical Society of America

1. Introduction

An accurate knowledge of the refractive index of air is essential to precise length interferometry or geodetic surveying. Where overall uncertainties of approximately 1 part in 107 are sought, the refractive

research. Some of these new results have been incorporated in a recent revision by Birch and Downs³ (corrected in Ref. 4), with greatly improved fits to the data at a wavelength of 633 nm. However, this study was restricted to conditions likely to occur in a 27.8.

28.8. 2024

29.8. 2024

30.8.

21.0	(- XTIN.TEMPI	ERATURE.2: MI	LO 1 (°C) : Mear	n=22.09, SD=0.0	2086			¢
20.5 27.8. 2024	28. 8. 2024	29. 8. 2024	30. 8. 2024	31. 8. 2024	1. 9. 2024	2.9. 2024	3. 9. 2024	
[%RH] 36								
35- <mark>بنغينا</mark>	it in the second second	<u> المحمد الم</u>	in all distributions	,	na hi ayaana ina	باردان المحادث	ىمىنى <u>تەرىمىنىمىنىم</u>	
35- 34-	ini katiyan (S	- XTIN.HUMII	DITY.1: 1.2 - opt	tical area - door	side [%RH] : Me MLD air 1 [%RH	an=32.35, SD=1	0.1640 SD=0.1211	
35- 34- 33- 32-	ananyani kana S Array di Kana	— XTIN.HUMII (— XTIN.HUMII	DITY.1: 1.2 - opf DITY.1: MLO1 -	tical area - door optical table at	side (%RH) : Ma MLO air 1 (%RH	ean=32.35, SD=1 1] : Mean=34.81	0.1640 , SD=0.1211	
35- 34- 33- 32- 31-	nn(panetani nn(panetani nn(panetani	(— XTIN.HUMII (— XTIN.HUMII (— XTIN.HUMII	DITY.1: 1.2 - opi	tical area - door optical table at	side (%RH) : M(MLO air 1 [%R MLO air 2 [%R	an=32.35, SD= i] : Mean=34.81	0.1640 , SD=0.1211	
35- 34- 33- 32- 31- 27. 8. 2024	28. 8. 2024	(— хтіп.ниміі (— хтіп.ниміі (— хтіп.ниміі 29.8. 2024	DITY.1: 1.2 - opt DITY.1: MLD1 - DITY.1: MLD1 - 30. 8. 2024	tical area - door optical table at differentiation 31. 8. 2024	side (%RH) : Ma MLO air 1 (%RH MLO air 2 (%RH 1 9 2024	ean=32.35, SD= 1] : Mean=34.81 2, 9, 2024	0.1640 . SD=0.1211 3.9. 2024	4. 20
35- 34- 33- 32- 31- 27. 8. 2024 hPaj XTIN	28. 8. 2024 .HUMIDITY.	(— XTIN.HUMII (—	DITY.1: 1.2 - opt DITY.1: ML01 - ML01	tical area - door optical table at the state of the state of the state of the state of the state of the state of the state of the state of the state	side (%RH] : M4 MLO air 1 (%RH 1 (%RH 1 9. 2024	an=32.35, SD= an=32.35, SD= 1] : Mean=34.81 	0.1640 , SD=0.1211 3, 9, 2024	 4. 20

Metrology Toolbox: https://emtoolbox.nist.gov/Wavelength/Ciddor.asp 9

31.8. 2024

1.9.

2.9.

3.9. 2024

4.9.

Signal Types

Triggers, Clocks, RF, Pulse Trains

- trigger signals
 - digital timing subsystems
 - laser pulse selection
- clocks
 - digital (timing) subsystems
 - ADCs, DACs, CPUs
- RF analogue
 - RF phase reference
 - diagnostics and instrumentation
- optical
 - laser pulse trains
 - diagnostics
 - experiment

DESY: "Hey, look at our (femtosecond) synchronisation system, based on an MLO, locking lasers with OXCs!

SLAC: "Cool, that's like our Pulsed Fiber Timing System, it has an OMO and TC-BOCs!"

- 10 Hz ... 1 kHz (few MHz)
- 100 ps ... ns
- 1 MHz ... 200 MHz
- 5 ps ... 20 ps
- 0.1 GHz ... 10 GHz
- 50 fs ... 1 ps
- 100s THz (carrier)
- MHz ...100s MHz (rep'rate)
- 10 fs ... 500 fs (duration)

Temporal Structure of Hamburg's Superconducting Linacs

Low Duty-cycle and Multiple Beamlines

- pulsed operation (RF ~1.4 ms, **10 Hz**) •
 - 2700/macropulse at 4.5 MHz EuXFEL
 - 800/macropulse at 1 MHz FLASH
 - min. 222 ns intra-burst \rightarrow single-pulse detection
- switchyards + distribution

SA3

SA1

TID

Gun 🎙

A1 AH1

fast kicker system, precise slow flat-top kicker

TLD

650 us

BC0

A2

BC1

A3

Synchronisation Techniques

Different Synchronisation Approaches

Difference in Carrier Frequency

 $\Delta t = \Delta f$

- LCLS
- PAL-XFEL
- FLASH, EuXFEL
- SwissFEL
- PAL-XFEL
- SACLA
- FERMI
- FLASH, EuXFEL
- SwissFEL
- SXFEL, SHINE
- LCLS-II
- CLARA-FEBE
- TELBE

Common Feature: RF Main Oscillator (MO)

FLASH's Ultra-low Phase Noise High Power 1.3 GHz Source

KVG Quartz Crystal Technology GmbH info@kvg-gmbh.de

integrated jitter: < 12 fs [10 Hz to 100 Hz] < 1.8 fs [100 Hz to 1 kHz] < 0.8 fs [1 kHz to 1 MHz]

15:09:06 20.09.2023

Phase Noise

1.3 GHz RBW

14.52 dBm XCORR Factor

MultiView

Signal Level

Signal Frequency

Spectrum

50

- Improvement of integrated jitter from 38 fs to 2 fs [100 Hz, 1 MHz]
 - fs laser systems locked to the reference show significant improvement

RF-only Reference Distribution Concept I

Example: SINBAD ARES

- NC S-band linac for ultra-short bunches
 - low charge beams ~10 pC or less
 - sub-10 fs arrival time stability
- novel acceleration techniques/testbed, e.g.
 Accelerator on a Chip DLA
- accelerator components R&D
- ML approaches "autonomous accelerator"

DESY. | Latest Achievements in Femtosecond Synchronisation | IBIC2024, Beijing, China | Sebastian Schulz, 12 September 2024

RF-only Reference Distribution Concept II

Example: SINBAD ARES

- installation in basement below acc. hall
- commercial / custom-built MO (2.998 GHz)
- RF distribution **on cables**
 - no additional stabilization presently
 - passive temperature stabilization \rightarrow planned
 - active stabilization \rightarrow planned

- **photocathode laser** synchronisation
 - direct RF lock ("heterodyne detection")
 - MZM-based laser-to-RF phase detector \rightarrow planned
- ACHIP laser synchronisation ($\lambda_0 = 2 \ \mu m$)
 - **all-optical** balanced optical cross-correlation

Hybrid Approaches: SwissFEL

Pulsed Optical Synchronisation and "Radio-over-Fibre"

- US and slightly detuned European RF frequencies
- based on OMO, 142.8 MHz
- cw fibre links

S. Hunziker et al., in Proc. IBIC2014, pp. 29-33 **17**

DEDI.

Hybrid Approaches: SwissFEL

booth B07 ->

Pulsed Optical Synchronisation and "Radio-over-Fibre"

- US and slightly detuned European RF frequencies
- based on OMO, 142.8 MHz
- cw fibre links
 - collaboration with I-Tech
 - transmitter/receiver units
 - amplitude modulation (AM)
 - two optical fibres per link
 - active drift stabilisation
 - "low jitter link"
 - at Rx side, both signals are demodulated to RF
 - 40 fs peak-to-peak (24 h)
 - sub-10 fs rms [10 Hz, 10 MHz]

Hybrid Approaches: PAL-XFEL

Classic RF Distribution + Temperature Stabilised Cable Duct

DESY. | Latest Achievements in Femtosecond Synchronisation | ...

Pulsed Optical Synchronisation

RF Reference Distribution

Integral Part of Particle Accelerator Operation

- availability 24/7, mature and established technology
- limitations
 - cable drift: ~10 fs/m/K ⇒ **35 ps/K** at EuXFEL
 - cable attenuation: ~0.03 dB/m \Rightarrow ~100 dB at EuXFEL \Rightarrow amplification adds drift and jitter
 - RF signals susceptible to EMI

? but best laser systems synchronisation performance, temporal beam diagnostics

Laser-based Synchronisation System Topology

World-wide Unique Large-Scale 24/7 Operation of 30+ Fibre Links and Subsystems

- optical reference (main laser oscillator, MLO) tightly locked to RF main oscillator (MO) distributed via actively length stabilized optical fibre links
- laser lock (photocathode, pump-probe, ...)
- RF re-synchronisation (**REFM-OPT**)
- bunch arrival time monitors (BAM)
- laser pulse arrival time monitors (LAM)

DESY. | Latest Achievements in Femtosecond Synchronisation | IBIC2024, Beijing, China | Sebastian S

J. Kim et al. / Proceedings of the	2004 FEL Conference, 339-342	339			
LARGE-SCALE TIMING DISTRIBUTION AND RF-SYNCHRONIZATION FOR FEL FACILITIES					
W. S. Graves, D. E. Moncton, T. Zwart, MIT-Bates Lin <i>Abstract</i>	near Accelerator Center, Middleton, MA 01949, USA				
For future advances in accelerator physics in general	Optical Optical master oscillator Frequency				
Tor future advances in accelerator physics in general	Clock Mode-locked laser Standard				
and seeding of free electron lasers (FELs) in particular, precise synchronization between low-level RF-systems,	Clock Mode-locked laser Standard Timing Distribution Timing stabilized fiber links				
and seeding of free electron lasers (FELs) in particular, precise synchronization between low-level RF-systems, shoto-injector laser, seed radiation as well as potential	Clock Mode-locked laser Standard Tming Datribution Cptical-Synch				
and seeding of free electron lasers (FELs) in particular, precise synchronization between low-level RF-systems, photo-injector lasers, seed radiation as well as potential probe lasers at the FEL output is required. In this paper, we propose a modular system that is capable of achieving	Clock Indel-Iccled later Blandard				
and seeding of free electron lasers (FELs) in particular, precise synchronization between low-level RF-systems, photo-injector laser, seed radiation as well as potential probe lasers at the FEL output is required. In this paper, we propose a modular system that is capable of achieving synchronization of various RF- and optical sub-systems	Clock Mode-locked later Blandard				
and seeding of free electron lasers (FELs) in particular, precise synchronization between low-level RF-systems, photo-injector laser, seed radiation as well as potential probe lasers at the FEL output is required. In this paper, we propose a modular system that is capable of achieving synchronization of various RF- and optical sub-systems with femtosecond precision over distance of several	Clock Dede-locked taer Bandast Timing stabilized fiber inks Clocked System Timing stabilized fiber inks Clocked System Rr-Synch RF-Sensetes, OHz K = 10 fib.				

Main Laser Oscillator (MLO, OMO)

Low-noise Femtosecond Passively Mode-locked Laser System

- 216 MHz, 200 fs, 1550 nm, 125 mW •
- 24/7 operation, 2 redundant systems •
- tight lock to main RF oscillator (MO)
 - balanced MZM-based laser-to-RF phase detector •
 - sub-2 fs rms timing jitter

2

3

• 2 fs peak-to-peak drift

timing (fs)

-4 -6

0

3.52e-02

9.73e-03

1.13e-01

4.56e-01

1.41e+00

1.11e+00

Latest Achievements in Femtosecond Synchronisation | IBIC2024, Beijing, China | Sebastian Schulz, 12 September 2024 DESY.

Phase Locking

Classic Phase-Locked Loop Scheme

- objective
 - minimise phase error between controlled oscillator and reference oscillator ("synchronisation")
- how
 - detect phase error
 - RF-RF, RF-optical, optical-optical
 - feedback via phase controller to tuneable oscillator
 - PI controller usually sufficient
- considerations
 - faster/more aggressive controller response
 - higher loop bandwidth = less relative error / jitter
 - controller gains limited by loop stability
 - minimise loop latency and low-pass dynamics
 - high gains might add measurement noise via loop

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau \qquad C(s) = K_P + \frac{K_I}{s}$$

MZM-Based Laser-to-RF Phase Detector

Dual-Output MZM / Dual-Delay For Simultaneous Error Generation

- idea: laser pulse samples RF signal on both slopes
- amplitude modulation of laser pulses $\propto \Delta \varphi_{\rm RF}$
 - all four pulses involved
- simultaneously retrieve bias error, plus Δr_s
- delays $T_1 = T_{rep}/4$ and $T_2 = T_{rep}/2$
- a) no RF, perfect delay arrangement $\Delta r_s = 0$
- b) splitting ratio error Δr_s
- c) RF applied, perfectly aligned to slopes
- d) error $\Delta \varphi_{\text{RF}}$ on RF signal \rightarrow modulation at f_{rep}
- e) error ΔV_b on $V_{bias} \rightarrow$ modulation at f_{rep} , but phase shifted by $\pi/2 \rightarrow$ phase-sensitive detection

Reference Timing Distribution

Actively Stabilised Fibre-optic Links to All Timing-critical Subsystems

Reference Timing Distribution

Actively Stabilised Fibre-optic Links to All Timing-critical Subsystems

- optical delay line (4 ns, slow)
- ~1 fs rms for 3.6 km fibre link?

Electron Bunch Arrival Time Measurement

Schematics and Principle of Operation

DESY.

- pickup for transient E-field from e⁻ bunch: **40 GHz+**
- time reference from optical synchronisation system •
- used for slow and fast longitudinal feedbacks

ADC2

16bit/

Electron Bunch Arrival Time Stabilisation

Multi-Stage, Multi-Bandwidth Feedbacks Along the Accelerator

Electron Bunch Arrival Time Stabilisation

Multi-Stage, Multi-Bandwidth Feedbacks Along the Accelerator

System Performance Validation

Self-Contained Validation and Benchmark

Timing Jitter and Drift Measurement After ~8 km of Fibre with Intermediate, Synchronised Reference Laser Oscillator

- establish a "loop" from main to sub-synchronisation lab and back
 - using spare fibre laid out in the tunnel
- all-optical measurement \rightarrow caveat: temporal overlap in optical cross-correlator

Self-Contained Validation and Benchmark

Timing Jitter and Drift Measurement After ~8 km of Fibre with Interme

- establish a "loop" from main to sub-synchronisation lab an
 - using spare fibre laid out in the tunnel
- all-optical measurement \rightarrow caveat: temporal overlap in opti

Round-Trip Timing Drift vs. Environmental Parameters

Most Prominent – And Uncontrollable – Effect: Air Pressure

- correlation factor -1.11 fs/mbar/m
 - remaining path difference, and other contribution

- residual drift ~10 fs peak-to-peak, ~3.5 fs rms
 - under investigation delay line effect?

Round-Trip Timing Drift vs. Environmental Parameters

Most Prominent – And Uncontrollable – Effect: Air Pressure

- correlation factor -1.11 fs/mbar/m
 - remaining path difference, and other contribution
- residual drift ~10 fs peak-to-peak, ~3.5 fs rms
 - under investigation delay line effect?

Synchronisation System Benchmark with Electrons: Time Domain

Beam-based Evaluation of the Performance by Arrival Time Correlation

DESY. | Latest Achievements in Femtosecond Synchronisation | IBIC2024, Beijing, China | ...

Synchronisation System Benchmark with Electrons: Frequency Domain

Beam-based Evaluation of the Performance by Arrival Time Correlation

Synchronisation System Benchmark with E

Beam-based Evaluation of the Performance by Arrival Time Correlation

Ocean Wave Effect on Electron Bunch Arrival Time

Detection of Ocean Waves in Electron Bunch Straight Path

DESY. | Latest Achievements in Femtosecond Synchronisation | IBIC2024, Beijing, China | Sebastian Schulz, 12 September 2024

Laser Pulse Arrival Time Monitor

Two-Colour Balanced Optical Cross-Correlator

- foundation: established monolithic platform
 - all-optical scheme, very high sensitivity
 - balanced collinear nonlinear cross-correlation

- can include 5 ns **user experiment delay control**
- adaptable to different laser parameters ... really?

Laser Pulse Arrival Time Monitor Foundation

Sellmeier Equation, Phase Matching and Conversion Efficiency

$\boldsymbol{k}_{3,3'} = \boldsymbol{k}_1 \pm \boldsymbol{k}_2$	with	$ \mathbf{k}_i = k_i = \frac{\omega_i n(\omega_i)}{c_0} = \frac{2\pi n_i}{\lambda_i}$	$n^2(\lambda) = 1 + \sum_j \frac{B_j \lambda^2}{\lambda^2 - C_j},$	$n^{e}(\Theta) = \left(\frac{1 + \tan^{2}\Theta}{1 + (n_{o}/n_{e})^{2}\tan^{2}\Theta}\right)^{1/2}$
---	------	--	--	---

negative uniaxial crystals	positive uniaxial crystals	conversion efficiency
$\tan^2 \Theta_{\rm pm}^{\rm (ooe)} = (1-U)/(W-1)$	$\tan^2 \Theta_{\rm pm}^{\rm (eeo)} \simeq (1-U)/(U-S)$	$P_3 = 8\pi d_{ac}^2 L^2 P_2 = \sqrt{ \Delta k L}$
$\tan^2 \Theta_{\rm pm}^{\rm (eoe)} \simeq (1-U)/(W-R)$	$\tan^2 \Theta_{\rm pm}^{\rm (oeo)} = (1-V)/(V-Y)$	$\frac{1}{P_1} = \frac{1}{\varepsilon_0 c_0 n_1 n_2 n_3 \lambda_3^2 w_0^2} \operatorname{sinc}^2 \left(\frac{1-\lambda_1 - \lambda_2}{2} \right)$
$\tan^2 \Theta_{\rm pm}^{\rm (oee)} \simeq (1-U)/(W-Q)$	$\tan^2 \Theta_{\rm pm}^{\rm (eoo)} = (1-T)/(T-Z)$	
notation:		with $\Delta \kappa = \kappa_1 + \kappa_2 - \kappa_3$
$U = (A + B)^2 / C^2; W = (A + B)^2 / F^2; R = (A + B)^2 / F^2;$	$= (A+B)^2/(D+B)^2$	and $d_{\text{eff}} = d_{31} \sin \Theta - d_{22} \cos \Theta \sin \varphi$
$Q = (A + B)^2 / (A + E)^2; S = (A + B)^2 / (D + E)^2$	$(+E)^2; V = B^2/(C-A)^2$	
$Y = B^2/E^2;$ $T = A^2/(C-B)^2;$ $Z = A^2/D^2$	2	
$A = n_{o,1}/\lambda_1; B = n_{o,2}/\lambda_2; C = n_{o,3}/\lambda_3$		
$D = n_{e,1}/\lambda_1; E = n_{e,2}/\lambda_2; F = n_{e,3}/\lambda_3$		

 Θ_{pm} = 22.2 deg for BBO, collinear type-I⁻ mixing 800 nm and 1550 nm \Rightarrow 527 nm SFG, efficiency ~1%

 $\xrightarrow{\mathbf{k}_1 \quad \mathbf{k}_2}_{\mathbf{k}_3}$

Advanced Laser Pulse Arrival Time Measurements

One Challenge: Covering a Huge Spectral Range for User Experiments

fundamentals: 800 nm and 1030 nm

- SHG, THG, FHG: 400 nm, 266 nm, 515 nm, 343 nm, 258 nm
- NOPA, SFG, DFG, e.g. with Topas:

- signal separation (dichroic mirrors), GDD?
- non-collinear phase matching to the rescue?!
 - would allow for automated crystal tilting WL tuning

courtesy of A.-L. Calendron, D. Schwickert, N. Kschuev, S. Hoseinkhani 36

non-collinear phase matching to the rescue?!

2000

Wavelength (nm)

signal separation (dichroic mirrors), GDD?

• would allow for automated crystal tilting WL tuning

3000

5000

7000

10000

Advanced Laser Pulse Arrival Time Measurements

L_{0.1} â

One Challenge: Covering a Huge Spectral Range for User Experiments

fundamentals: 800 nm and 1030 nm

- SHG, THG, FHG: 400 nm, 266 nm, 515 nm, 343 nm, 258 nm
- NOPA, SFG, DFG, e.g. with Topas:

10

Energy (µ))

0.1

200

300

500

700

1000

 $U_{\text{vec}} = (A^2 + B^2 + 2AB\cos\gamma_{\text{vec}})/C^2$ $W_{\text{vec}} = (A^2 + B^2 + 2AB\cos\gamma_{\text{vec}})/F^2$

Laser Pulse Arrival Time Monitor at Experiment's Interaction Points

Complementary to PAM at Experimental Stations

- based on common, fibre-based optical reference (MLO, 2 fibre links, 2 ODLs...)
- test and implementation at the FELs in stages
 - single-pulse measurements (up to 4.5 MHz at EuXFEL, 100 kHz and 1 MHz at FLASH)
 - feedback to compensate drifts (up to 10 Hz rep'rate)
 - fast feedbacks over the burst or for HDC (requires additional LLL from LAM to lock/controller)
- successful, active slow (~ 1 Hz) drift stabilisation in several user experiments

Temporal Resolution In FLASH User Experiments

Benchmark at FL26 – Laser-assisted Xe Photoionisation Using 800 nm

• active arrival time feedback

~500 fs peak-to-peak drift compensated

final jitter contribution under investigation...

• **19.6 fs rms** relative timing jitter ← LAM & BAM

Multi-Pass Cell Laser Delivery at FLASH FL23

Laser-only Arrival Time Benchmark Experiment at 1030 nm

• sketch of 2021 implementation

• 2024 measurement campaign

Seismic Activity Influence

P and S Waves

Body Waves Inside the Earth

- P or compressional wave
 - velocity typically 6 km/s
- S or shear wave
 - velocity ~3.4 km/s close to surface
 - no propagation through liquid material

• L or Love wave, R or Rayleigh wave

European XFEL Building Overview

Tunnels, Halls, Shaft Buildings

- experiment hall and shafts connected by e⁻ and photon tunnels
- synchronization labs and fibre installation
 - horizontally in ducts (XTL), on trays (XTDs)
 - vertically on trays in shaft buildings
 - blown into quite rigid protective tubing
 - lubricant hardened over the years
- different routes in XTDs

Singular Events

Fibre Link Stabilisation (Partly Failing) After an Earthquake

- EuXFEL has been stretched > 3 mm
- distortion visible > 1 h

20

- farther and weaker earthquakes detectable
- complementary DAS measurements
- started seismological modelling of EuXFEL building dynamics

DESY. | Latest Achievements in Femtosecond Synchronisation | IBIC2024, Beijing, China | Sebastian Schulz, 12 September 2024

Singular Events

Fibre Link Stabilisation Disturbance Analysis

L 103

Fahrenort

Singular Events

Fibre Link Stabilisation Disturbance Analysis

L 103

Fahrenort

Distributed Acoustic Sensing

WAVE Hamburg

- optical fibre as a sensor
 - detect vibrations and acoustic signals along its entire length
- light scattering and location
 - analysis of back-scattered light to detect and locate disturbances along the fibre

real-time monitoring

 continuous detection of seismic activity over long distances (fibre length at DESY ~12 km)

DESY. | Latest Achievements in Femtosecond Synchronisation | IBIC2024, Beijing, China | ...

Data-Driven Approaches

Data Acquisition and Storage

Dedicated DAQ System for the Laser-Based Synchronisation System

- deep integration into the control system
- foundation of ML applications

- data sources ~47000 control system channels
 - controller I/O of all feedback systems
 - configuration
 - environment (*T*, relative humidity, air pressure)
- volume ~250 TB since 2021
 - 10 Hz acquisition rate
 - daily 10-second long snapshots of "fast" data

DESY. | Latest Achievements in Femtosecond Synchronisation | IBIC2024, Beijing, China | Sebastian Schulz, 12 September 2024

Data-Driven Condition Monitoring

The Bathtub Curve – Failure Rates Over the Lifetime of a System

- infant mortality phase
 - manufacturing defects, installation issues
- stable life phase
 - low and stable failure rate, random/unexpected failures due to sudden, not age-related events
- wear-out phase
 - aging effects, components wearing out

- reliability
 - early fault detection, consistent performance, extended lifespan
- availability
 - minimisation of unplanned downtime, avoidance of unnecessary maintenance activities
- data sources
 - analysis of both fast and slow data

Main Laser Oscillator PLL Signal

Fault Analysis

- difference w.r.t. ground truth
- ground truth / healthy state
 - defined by operator
- problem: external influence
 - metadata capturing
- work in progress

DESY. | Latest Achievements in Femtosecond Synchronisation | IBIC2024, Beijing, China | Sebastian Schulz, 12 September 2024

Conclusion

Latest Achievements ... Based on a Solid Foundation

- foundations laid out 10-ish years ago
- improved performance
 - laser-to-RF synchronisation
 - electron bunch arrival time FB
- novel techniques and approaches rising
 - laser-pulse arrival time monitoring \rightarrow FB, sorting
 - electron bunch arrival time $FF \rightarrow PP$ within a burst
 - machine learning, e.g. fault prediction
- novel problems and issues
 - ocean waves and other seismic activity
- learning curve: communication with photon science people and users, as well as laser guys

- LAM and user-delay control
- attosecond optical laser / e⁻ / X-ray timing jitter
- further data-driven and AI approaches
- another tutorial in 10 years?

 learning from and teaching other facilities all around the globe!

Thanks.

Atia-tul-noor, S. Alisauskas, F. Burkart, A.-L. Calendron, H. Cankaya, G. Cirmi, M. K. Czwalinna, S. Düsterer, B. Erk, M. Felber, U. Frühling, A. Grünhagen, M. Hoffmann, S. Hoseinkhani, S. Kumar, N. Kschuev, T. Lamb, B. Lautenschlager, J. Liu, F. Ludwig, J. Müller, S. Pfeiffer, H. Pryschelski, N. Schirmel, H. Schlarb, C. Schmidt, M. Schütte, D. Schwickert, F. Zummack, the whole FL23, FL24, FL26 beamline teams, the Hamburg WAVE team, DESY MSK, MCS, FS-LA, EuXFEL's LAS group and all scientific instruments

Contact

Deutsches Elektronen-Synchrotron DESY

www.desy.de

Dr. Sebastian Schulz MSK | Laser-based Synchronisation Systems +49 40 89981872 sebastian.schulz@desy.de

Supplementary Material

Terminology / Glossary I

Wording Across the Globe...

- **BAM** (Electron Bunch Arrival Time Monitor): apparatus to measure the arrival time of the electron bunch with respect to an optical pulse train based on electrooptic sampling of the transient electric field induced in a high-frequency pickup antenna installed in the beam pipe.
- BCC (Balanced Cross-Correlator), BOC (Balanced Optical Cross-Correlator), OXC (Optical Cross-Correlator): normally refers to the optical implementation of a scheme based on nonlinear optical crosscorrelation and usually realized in a balanced, i.e. amplitude fluctuation insensitive way. Depending on the specific implementation, application or related feedback systems, the acronym is extended, as in **TC-BOC** (Two-Color BOC), cmBCC (Common Mode BCC), dmBCC (Differential Mode BCC), SysDC (System Drift Correlator). The foundation of the **LAM** is also the balanced cross-correlation scheme. The acronym OXC is not to be confused with OCXO (Oven-Controlled Crystal Oscillator), which refers to a term in the RF domain.
- FSD (Free-Space Distribution): refers to the optical setup to split and distribute the laser beam of the MLO to the individual LSUs, either realized in a TSP or inside a actively and passively designed environmentally very stable lab. Alternatively, splitting can be realized using optical fibre couplers.
- LAM (Laser Pulse Arrival Time Monitor): opto- electronic implementation of an apparatus to measure the relative arrival time between two optical pulse trains, being usually the one of the pump-probe laser with respect to an optical reference and based on an OXC, with the goal to measure or provide feedback to stabilize the laser pulse arrival time. Depending on the context, either the whole implementation or only the optical part is referred to.
- **LSU** (Link Stabilization Unit), **FLS** (Fiber Link Stabi- lizer): opto-electronic device to measure and compensate for changes of an optical fiber. Depending on the context, only the optical (i.e. mainly the optical cross-correlator), only the actuator part or the whole implementation is referred to.
- MLO (Main Laser Oscillator), or OMO (Optical Main Oscillator): in pulsed optical synchronization systems, this oscillator provides the train of laser pulses with approx. 200 fs duration, where its repetition rate provides the timing reference for all connected subsystems.
- **MO** (Main Oscillator), or **RMO** (RF Main Oscillator): The main radio frequency oscillator of the accelerator facility.

Terminology / Glossary II

Wording Across the Globe...

- ODL (Optical Delay Line): device to precisely control and delay the arrival time of an optical laser pulse train. Depending on the implementation, an FDL (Fiber Delay Line) might be employed, where e.g. an optical fibre is altered in length by varying its temperature (TC-FDL, Temperature-Controlled FDL).
- **PAM** (Photon Pulse Arrival Time Monitor), or **ATM** (Arrival Time Monitor): apparatus to measure the relative arrival time of a XUV or X-ray pulse with respect to an optical reference pulse. Numerous implementations of PAMs are deployed across the different accelerator facilities, where normally the pump-probe laser serves as reference. However, also the reference pulse train of the optical synchronization system is used in specific applications.
- **PFTS** (Pulsed Fiber Timing System): mainly at LCLS, this term is used for the synchronization system based on a pulse optical laser oscillator as MLO. Note that other facilities use the term "timing system" also for the less precise, i.e. not with femtosecond resolution and stability, distribution of clock and trigger signals.
- **TSP** (Temperature Stabilized Platform): In some implementations, the core components of the synchronization system (MLO, splitting, LSUs, ODLs) are installed in this well temperature and humidity controlled enclosure.

DESY: "Hey, look at our (femtosecond) synchronisation system, based on an MLO, locking lasers with OXCs! SLAC: "Cool, that's like our Pulsed Fiber Timing System, it has an OMO and TC-BOCs!"