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Yu Different types of distributions with the same RMS moments
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Clear differences exist between distributions, how to quantify?
» Method 1: Using RMS moments — No difference? X

» Method 2: Comparing distribution differences point by point. \/
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Beam 4D transverse phase space tomography
Reconstructed distributions

Real distribution
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» As more profiles are selected, the reconstructed distribution increasingly
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approaches the real distribution.

» How to measure the degree of difference between them?
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high-dimensional phase space.

Methods: Using statistical divergences.

Demands: Accurately quantifying the difference between two beam distributions in

Significance: It's crucial for the interpretation of experimental and simulation results.

D7




Evaluating the s H e >
e f-divergences N4

f-Divergence

» The f-divergences are a common class of methods used to measure the
difference between two probability distributions, defined as follows:

p()]
(x)

DAp()Ila(x)] = / a )f[

» f(-) is a convex function and satisfies (1) =
» Different f(-) correspond to different statistical divergences:

Name f(t) Delp(x)[lq(x)]
Kullback-Leibler tint [ p(x)In [Pg;] dnx
2
Jensen-Shannon % [(t+ 1)In(t+1)+tln t] %f{q(x)ln [W(q)(x) +p(x)In [W(:’)(X) } d"x
Total Variation 2|t— 1] 5 f |p(x) — g(x)| d"x
2
Squared Hellinger (Vi-1)2 / [\/p(x) - \/q(x)] dnx

Four forms of f-divergences; x € R", t = p(x)/q(x)

f-divergences give the total contribution of differences at all points. 5/27
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Yu Distribution Definition Schematic Diagram of
with Elliptical p(xX,v.y)=p() 2D Projection
Symmetry I=xT2"1x (x,x)
Gaussian —1 . e 3! .
(V2m)*|z)2
Parabolic —5 _. (1 - §’) , 1<8 . 2
(VBmdzlz N T o
Water Bag —2 /<6 -
(Vor)4|Z|2 o
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Quadratic form expression of beam distributions with elliptical symmetry; x = (x, X, y,y) T.
Y is a covariance matrix composed of 10 independent second-order moments. 6,/27
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Yu » p1 and p> have the same X, but different distribution types

> The beam distributions are matched: M, = M, =0

» The RMS emittance is the same: £ = 2~ =1
Ex0 Lg%

» We have directly calculated the divergence values between the following
distributions using mathematical integration:

p1(x), p2(x) Dk Djs Drv DHey

Parabolic, Gaussian ~ 0.185837 0.054823 0.226909 0.262902
Woater Bag, Gaussian 0.495922 0.134071 0.391299 0.407679
Water Bag, Parabolic 0.231856 0.071380 0.223872 0.309006

The f-divergences between different distributions with the same RMS emittance.

» For two different types of beam distributions, as long as their X are the
same (regardless of the values), the Dr between them is fixed.
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In the (x1,>(1,x2,)(2, e ,x,-,>(l., -++, Xp, X,,) phase space (2n-D), given two uncoupled
beam distributions with elliptical symmetry, the f-divergences between them are
uniquely determined by the mismatch factors in the 2D subspaces represented by
the elements of the set {(xj,x;) | i=1,2,---,n}.

Ds and Mismatch Factor

! m

7‘@\ (7’< 155“3 Verification Method:
R : ng » Generate the same mismatch factor in two

: different ways: Rotation, Scaling.

P1 g > P2 M= R€/RC‘ 1 » Ensure the same &5 in the (x,x") and

2 (v, ¥) phase spaces, but with second-order

Lo/ ~ 3 g i i
: Q(ilhl " <7Pff . moments that are not completely identical.
» Check whether f-divergences obtained from

scale _ these two methods is identical.
pL— P M=Rg/Rc-1 8/27
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The relationship between 4D KL-divergence and transverse mismatch factor(Asymmetric) 9/27
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The relationship between 4D JS-divergence and transverse mismatch factor(Symmetry) 10/27
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The relationship between 4D TV-distance and transverse mismatch factor(Symmetry) 11/27
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The relationship between 4D Hellinger-distance and transverse mismatch factor(Symmetry32/27
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» The above figures illustrate how f-divergences vary with mismatch factors.

» The curves obtained from the two methods coincide (corresponding to the
M G solid and dashed lines in the figure), indicating:

The relationship between 4D f-divergence and transverse mismatch factors

In the (x, X, y,y) phase space, for two beam distributions with ellipti-
cal symmetry and no x-y coupling, the f-divergences between them are
uniquely determined by the two transverse mismatch factors.

This relationship can be utilized to provide an assessment standard for these
popular divergences.
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Dy and Mismatch Factor

i

Assessment Heatmap for 4D f-divergences |(m,, M,) — D; <
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Theorem

In the (x1, X, x2, %), ++ , Xi, X}, -+ + , Xn, X,;) phase space (2n-D), given two beam
distributions with elliptical symmetry and no coupling, if the mismatch factors
{M; | i=1,2,---,n} in the 2D subspaces represented by {(x;,x) | i=1,2,---,n}
are all zero, then the f-divergences between them depend only on the scaling
ratios of the RMS emittances {¢i/ey | i=1,2,---,n} in these 2D subspaces.

D¢ and RMS Emittance

Simulation Content
Premise: The beam distributions are matched: M, =M, =0

Operation: Vary the RMS emittance in the (x, x') and (y, y') sub-phase spaces:
Ex = kiexo, &y =kaeyp, &ap=kika-&xEy

Goal: Investigate how the f-divergences vary with the ‘f—xz and j—;.

15/27
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The relationship between 4D KL-divergence and RMS emittance 16/27
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The relationship between 4D JS-divergence and RMS emittance 17/27
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The relationship between 4D TV-distance and RMS emittance
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The relationship between 4D Hellinger-divergence and RMS emittance
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f-Divergence

» The above figures illustrate how f-divergences vary with #/s, and @/e,.
Yu

» Using e /ey, = 1 as the boundary, D s, D7y and Dy satisfy the following
symmetry(values are the same), but Dy; does not:

» Distributions of the same type:

and RMS : Ent _ 0 £ £ .
Dy and RMS Emittance —== =(. 1= EX0 — &x2 _
E(xly)0 %—N a1 B0 kX, kX > 1 ,’ /—\
\%;—%po M=oy, k21 pz\\\_/

&yl £€y0

- - Ln2 _

<(xy)0

» Distributions of different type(&(xjy)0 = E(xy)0):

S _
&0

N A0 ‘?—y“:%:ky, ko> 1 P2&

Ey1 €y0

M

Ex

When M, = M, = 0, the f-divergences depend solely on o and =~ yo This relation-
ship can be utilized to provide a second assessment standard for the f-divergence.

ey e
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and RMS Emittance

Assessment Heatmap for 4D f-divergences |(=,
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» We have set assessment standards using ideal distributions.
it » This can offer a rough Df assessment reference for non-ideal distributions.

fmm
> Gaussian? Parabolic? Water Bag?
> Correspondlng to the existing evaluation heatmaps.

For example: Beam 4D transverse phase space tomography result analysis

: = Real D7y =0.1947 [Reconstructed| ©2 :
1 closest tod . o dclosest to
s GaussianL_distribution distribution |- csian !
Case 1 (Gaussian-Gaussian): Case 2 (Gaussian-Gaussian):

&yleyo

0.2 Ex — ]_.7(Or 1_17)
2 =1.1(or )
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p1(x)

d"x
p2(x)

Dt [pallp2] = / p1(x) In

» Asymmetric

> j_;) = ;—;} =1: Dk [p1llp2] # Dk [p2llp1l, violates triangle inequality

» M= My =0: DKL,M # Dy zewo; Dy sz # Dy sene. Not in line with reality.
£(x0 7 €0yt ? EGino ? iyt
» Non-fixed evaluation standards
> |p1=p2=0p D=0

> P12 0,p2# 0] Dr= lim piln(p1) =0
p1—

> | p2— 0,00 #0 Df—

In this case, p> can be set to a small value ¢, but Dy, varies with different ¢,

thus leading to different assessment standards .
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“ Dr in 4D spherical coordinates:
’
p1(n Lo
Dilp Dl = [ pé(r)f[p, [ Psint s detdsduadvs
2
p'(r) Dyv
Dy Assign Weights to Core, , 0.45 E
Tail and Halo PGaussian = (/zm1 " € A0 0.3013004053352286 _ __ _
p’VVnts‘rhuq = (ﬁ r?
.............. (V6.0.201752)
Halo Tail i Te ,, Iail  Halo E
:' : X E\L :(l 7344,0. n;asusav)
+ \E_Iz‘j‘»" ,I1 ¢ { ],‘7:;; — » \l\HHH'HlHHIHH\lH\HHHlHHHH\é r
The variation of p’(r) with integration radius The variation of D1\ with integration radius
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Yu . Gaussian-Water Bag Gaussian-Parabolic
Distribution area
JS(%) TV(%) Hel(%) JS(%) TV(%) Hel(%)
Core 14.04 2456 3399 1486 27.86 34.48
Tail 3449 50.00 29.34 2728 51.97 23.65
Halo 51.47 25.44  36.67 57.86 20.17  41.87

The sensitivity of various divergences to different beam distribution areas

. N

Priority of divergence selection J emms s\‘
» Core: Dyey — D71v — Dys ." :{nﬂreﬁp‘g—;
» Tail: Dy — Djs — Dy “‘ “‘:'faf':', ,',
» Halo: DJS - DHeI i DTV \\~ Halo ,'/

_____

Gaussian-Water Bag Gaussian-Parabolic /27
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Theorem

The f-divergences are conserved during the linear transport process.

De(p1llp7) -

P1 P1
De(p1llp2) Linear Transport De(pillp3)
p2 - 05
DA p2l|p3)

» Dr(p1llp]) not necessarily equal to De(p2||p3);
> Dip1llp2) = D pillp3) always holds true.

This conclusion may be utilized when describing beam transport using Dr.
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Encouraging results from the quantification of beam distribution differences
Summary using common f-divergences

» Addition tool to analyze beam simulations and experiments

f-divergence values from common 4D distributions can provide assessment
standards

» Only depend on mismatch factors and scaling ratios of the RMS emittances
Choice of f-divergences is goal-dependent

» Different emphasis on core, tail and halo
Properties under transport have much to be explored

» Conserved under linear transport
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