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Background

Different types of distributions with the same RMS moments

Parabolic 6 standard deviations Gaussian Water Bag

Clear differences exist between distributions, how to quantify?
▶ Method 1: Using RMS moments → No difference? ×
▶ Method 2: Comparing distribution differences point by point. ✓
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Background
Beam 4D transverse phase space tomography

(x, x′) projection 2 profiles 4 profiles 6 profiles

Reconstructed distributionsReal distribution

compare

▶ As more profiles are selected, the reconstructed distribution increasingly
approaches the real distribution.

▶ How to measure the degree of difference between them?
Demands: Accurately quantifying the difference between two beam distributions in

high-dimensional phase space.
Significance: It’s crucial for the interpretation of experimental and simulation results.

Methods: Using statistical divergences .
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f-divergences

▶ The f-divergences are a common class of methods used to measure the
difference between two probability distributions, defined as follows:

Df [p(x) | |q(x)] :=
∫

q(x)f
[
p(x)
q(x)

]
dnx

▶ f(·) is a convex function and satisfies f(1) = 0;
▶ Different f(·) correspond to different statistical divergences:

Name f(t) Df [p(x) | |q(x) ]

Kullback-Leibler t ln t
∫

p(x) ln
[

p(x)
q(x)

]
dnx

Jensen-Shannon 1
2

[
(t + 1) ln

(
2

t+1

)
+ t ln t

]
1
2
∫ {

q(x) ln
[

2q(x)
p(x)+q(x)

]
+ p(x) ln

[
2p(x)

p(x)+q(x)

]}
dnx

Total Variation 1
2 |t − 1 | 1

2
∫
|p(x) − q(x) | dnx

Squared Hellinger (
√

t − 1)2
∫ [√

p(x) −
√

q(x)
]2

dnx

Four forms of f-divergences; x ∈ Rn, t = p(x)/q(x)

f-divergences give the total contribution of differences at all points.
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Several Common 4D Beam Distributions

Distribution
with Elliptical

Symmetry

Definition
𝜌(x, x′, y, y′) = 𝜌(I)

I = xTΣ−1x

Schematic Diagram of
2D Projection
(x, x′)
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Quadratic form expression of beam distributions with elliptical symmetry; x = (x, x′, y, y′)T;
Σ is a covariance matrix composed of 10 independent second-order moments.
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The Df Between Distributions of Different Types

▶ 𝜌1 and 𝜌2 have the same Σ, but different distribution types
▶ The beam distributions are matched: Mx = My = 0
▶ The RMS emittance is the same: 𝜀x

𝜀x0
=

𝜀y
𝜀y0

= 1
▶ We have directly calculated the divergence values between the following

distributions using mathematical integration:
𝜌1(x), 𝜌2(x) DKL DJS DTV DHel

Parabolic, Gaussian 0.185837 0.054823 0.226909 0.262902
Water Bag, Gaussian 0.495922 0.134071 0.391299 0.407679
Water Bag, Parabolic 0.231856 0.071380 0.223872 0.309006

The f-divergences between different distributions with the same RMS emittance.

▶ For two different types of beam distributions, as long as their Σ are the
same (regardless of the values), the Df between them is fixed.
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f-divergences in Relation to Mismatch Factors

Theorem
In the (x1, x′1, x2, x′2, · · · , xi, x′i , · · · , xn, x′n) phase space (2n-D), given two uncoupled
beam distributions with elliptical symmetry, the f-divergences between them are
uniquely determined by the mismatch factors in the 2D subspaces represented by
the elements of the set {(xi, x′i ) | i = 1, 2, · · · , n}.

x

x′

1

2

𝜌1
rotate−−−−→ 𝜌2

m

m′

RC

RE

M = RE/RC − 1

x

x′

1

2

𝜌1
scale−−−→ 𝜌2

m

m′

RC

RE

M̃ = RE/RC − 1

x = Pm

x = Pm

Verification Method:
▶ Generate the same mismatch factor in two

different ways: Rotation, Scaling.
▶ Ensure the same 𝜀rms in the (x, x′) and
(y, y′) phase spaces, but with second-order
moments that are not completely identical.

▶ Check whether f-divergences obtained from
these two methods is identical.
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Simulation Verification | (Mx,My) ↦→ DKL
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The relationship between 4D KL-divergence and transverse mismatch factor(Asymmetric)
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Simulation Verification | (Mx,My) ↦→ DJS
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The relationship between 4D JS-divergence and transverse mismatch factor(Symmetry)
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Simulation Verification | (Mx,My) ↦→ DTV
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The relationship between 4D TV-distance and transverse mismatch factor(Symmetry)
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Simulation Verification | (Mx,My) ↦→ DHel
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The relationship between 4D Hellinger-distance and transverse mismatch factor(Symmetry)
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Discussion of Simulation Results | (Mx,My) ↦→ Df

▶ The above figures illustrate how f-divergences vary with mismatch factors.
▶ The curves obtained from the two methods coincide (corresponding to the

solid and dashed lines in the figure), indicating:

The relationship between 4D f-divergence and transverse mismatch factors

In the (x, x′, y, y′) phase space, for two beam distributions with ellipti-
cal symmetry and no x-y coupling, the f-divergences between them are
uniquely determined by the two transverse mismatch factors.

This relationship can be utilized to provide an assessment standard for these
popular divergences.
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Assessment Heatmap for 4D f-divergences |(Mx,My) ↦→ Df
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f-divergences in Relation to RMS Emittance

Theorem
In the (x1, x′1, x2, x′2, · · · , xi, x′i , · · · , xn, x′n) phase space (2n-D), given two beam
distributions with elliptical symmetry and no coupling, if the mismatch factors
{Mi | i = 1, 2, · · · , n} in the 2D subspaces represented by {(xi, x′i ) | i = 1, 2, · · · , n}
are all zero, then the f-divergences between them depend only on the scaling
ratios of the RMS emittances {𝜀i/𝜀i0 | i = 1, 2, · · · , n} in these 2D subspaces.

Simulation Content
Premise: The beam distributions are matched: Mx = My = 0

Operation: Vary the RMS emittance in the (x, x’) and (y, y’) sub-phase spaces:

𝜀x = k1𝜀x0, 𝜀y = k2𝜀y0, 𝜀4D = k1k2 · 𝜀x0𝜀y0

Goal: Investigate how the f-divergences vary with the 𝜀x
𝜀x0

and 𝜀y
𝜀y0

.
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Simulation Results | ( 𝜀x
𝜀x0

,
𝜀y
𝜀y0
) ↦→ DKL
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The relationship between 4D KL-divergence and RMS emittance
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Simulation Results | ( 𝜀x
𝜀x0

,
𝜀y
𝜀y0
) ↦→ DJS
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The relationship between 4D JS-divergence and RMS emittance
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Simulation Results | ( 𝜀x
𝜀x0

,
𝜀y
𝜀y0
) ↦→ DTV
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The relationship between 4D TV-distance and RMS emittance
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Simulation Results | ( 𝜀x
𝜀x0

,
𝜀y
𝜀y0
) ↦→ DHel
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The relationship between 4D Hellinger-divergence and RMS emittance
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Discussion of Simulation Results | ( 𝜀x
𝜀x0

,
𝜀y
𝜀y0
) ↦→ Df

▶ The above figures illustrate how f-divergences vary with 𝜀x/𝜀x0 and 𝜀y/𝜀y0.
▶ Using 𝜀(x|y)/𝜀(x|y)0 = 1 as the boundary, DJS, DTV and DHel satisfy the following

symmetry(values are the same), but DKL does not:
▶ Distributions of the same type:

𝜌0𝜌1

𝜀(x|y)1
𝜀(x|y)0

= 0.5 
𝜀x0
𝜀x1

= 𝜀x2
𝜀x0

= kx, kx ≥ 1
𝜀y0
𝜀y1

=
𝜀y2
𝜀y0

= ky, ky ≥ 1 𝜌0𝜌2

𝜀(x|y)2
𝜀(x|y)0

= 2

▶ Distributions of different type(𝜀 (x |y)0 = 𝜀 (x |y)0):

𝜌0𝜌1

𝜀(x|y)1
𝜀(x|y)0

= 0.5 
𝜀x0
𝜀x1

= 𝜀x2
𝜀x0

= k̃x, k̃x ≥ 1
𝜀y0
𝜀y1

=
𝜀y2
𝜀y0

= k̃y, k̃y ≥ 1 𝜌0𝜌2

𝜀(x|y)2
𝜀(x|y)0

= 2

▶
When Mx = My = 0, the f-divergences depend solely on 𝜀x

𝜀x0
and 𝜀y

𝜀y0
. This relation-

ship can be utilized to provide a second assessment standard for the f-divergence.
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Assessment Heatmap for 4D f-divergences |( 𝜀x
𝜀x0

,
𝜀y
𝜀y0
) ↦→ Df
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Standard Values
▶ We have set assessment standards using ideal distributions.
▶ This can offer a rough Df assessment reference for non-ideal distributions.

▶ 𝜌non−ideal
Df,min←−−−−−→

closest to
𝜌ideal (Gaussian? Parabolic? Water Bag?)

▶ Corresponding to the existing evaluation heatmaps.
For example: Beam 4D transverse phase space tomography result analysis

Real
distribution

Reconstructed
distribution

DTV = 0.1947𝜌1

Gaussian

𝜌2

Gaussian
closest to closest to

Case 1 (Gaussian-Gaussian):

0 1
Mx

0.0

0.5

1.0

M
y

(0.3, 0.1, 0.1947)

DTV

0.0

0.2

0.4

0.6 𝜀x
𝜀x0

=
𝜀y
𝜀y0

= 1

Mx = 0.3(or 0.1)
My = 0.1(or 0.3)

Case 2 (Gaussian-Gaussian):

1 2
x/ x0

0.5

1.0

1.5

2.0

y/
y0 (1.7, 1.1, 0.1946)

DTV

0.0

0.1

0.2

0.3 Mx = My = 0
𝜀x
𝜀x0

= 1.7(or 1
1.7 )

𝜀y
𝜀y0

= 1.1(or 1
1.1 )
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Discussion on Kullback-Leibler Divergence

DKL [𝜌1 | |𝜌2] :=
∫

𝜌1(x) ln
[
𝜌1(x)
𝜌2(x)

]
dnx

▶ Asymmetric
▶ 𝜀x

𝜀x0
=

𝜀y
𝜀y0

= 1: DKL [𝜌1 | |𝜌2] ≠ DKL [𝜌2 | |𝜌1], violates triangle inequality

▶ Mx = My = 0: DKL, 𝜀(x|y)2𝜀(x|y)0
≠ DKL, 𝜀(x|y)0𝜀(x|y)1

; DKL, 𝜀(x|y)2𝜀(x|y)0
≠ DKL, 𝜀(x|y)0𝜀(x|y)1

. Not in line with reality.
▶ Non-fixed evaluation standards

▶ 𝜌1 = 𝜌2 = 0 : Df = 0

▶ 𝜌1 → 0, 𝜌2 ≠ 0 : Df = lim
𝜌1→0

𝜌1 ln(𝜌1) = 0

▶ 𝜌2 → 0, 𝜌1 ≠ 0 : Df →∞
In this case, 𝜌2 can be set to a small value c, but DKL varies with different c,
thus leading to different assessment standards .
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The Variation of Df with Integration Radius

Df in 4D spherical coordinates:

Df [𝜌′1(r) | |𝜌′2(r)] =
∫

𝜌′2(r)f
[
𝜌′1(r)
𝜌′2(r)

]
· r3 sin2 𝜓1 sin𝜓2 drd𝜓1d𝜓2d𝜓3

r

ρ′(r)

-3 -2 -1 0 1 2 3

0.005

0.010

0.015

0.020

0.025

√
6−

√
6 1.73-1.73

CoreTail Tail HaloHalo

ρ′Gaussian = 1
(
√
2π)4

· e− r2

2

ρ′Waterbag = 2
(
√
6π)4

, r2 < 6

The variation of 𝜌′ (r) with integration radius

r

DTV

0 1 2 3 4 5
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

(1.7344, 0.0960887)

(
√
6, 0.291752)

0.3913004953352286

Core

Tail

Halo

The variation of DTV with integration radius
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Different Df Assign Different Weights to the Core, Tail and Halo

Distribution area Gaussian-Water Bag Gaussian-Parabolic
JS(%) TV(%) Hel(%) JS(%) TV(%) Hel(%)

Core 14.04 24.56 33.99 14.86 27.86 34.48
Tail 34.49 50.00 29.34 27.28 51.97 23.65
Halo 51.47 25.44 36.67 57.86 20.17 41.87

The sensitivity of various divergences to different beam distribution areas

Priority of divergence selection
▶ Core: DHel → DTV → DJS

▶ Tail: DTV → DJS → DHel

▶ Halo: DJS → DHel → DTV

1.7344
√

6

5Core
Tail

Halo

Gaussian-Water Bag

1.68458

2.7382√
8

5Core

Tail

Halo

Gaussian-Parabolic
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f-divergences in Linear Transport

Theorem
The f-divergences are conserved during the linear transport process.

Linear Transport

𝜌1

𝜌2

𝜌∗1

𝜌∗2

Df(𝜌1 | |𝜌∗1)

Df(𝜌2 | |𝜌∗2)

Df(𝜌1 | |𝜌2) Df(𝜌∗1 | |𝜌∗2)

▶ Df(𝜌1 | |𝜌∗1) not necessarily equal to Df(𝜌2 | |𝜌∗2);
▶ Df(𝜌1 | |𝜌2) = Df(𝜌∗1 | |𝜌∗2) always holds true.

This conclusion may be utilized when describing beam transport using Df.
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Summary

1 Encouraging results from the quantification of beam distribution differences
using common f-divergences
▶ Addition tool to analyze beam simulations and experiments

2 f-divergence values from common 4D distributions can provide assessment
standards
▶ Only depend on mismatch factors and scaling ratios of the RMS emittances

3 Choice of f-divergences is goal-dependent
▶ Different emphasis on core, tail and halo

4 Properties under transport have much to be explored
▶ Conserved under linear transport



Thanks !
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