

Yu Du

duyu@impcas.ac.cn

Institute of Modern Physics, Chinese Academy of Sciences

September 11, 2024

Evaluating the Use of Common Statistical Divergences to Quantify the Differences Between Beam Distributions in High-Dimensional Phase Space

The 13th International Beam Instrumentation Conference (IBIC2024)

Yu

ntroduction Research Content Summary

Contents

Introduction

- Background
- f-divergences
- Beam distributions

2 Research Content

- f-divergences between distributions of different types
- f-divergences in relation to mismatch factors
- \blacksquare f-divergences in relation to RMS emittance
- Standard values
- Discussion on Kullback-Leibler divergence
- Different f-divergences assign different weights to the core, tail and halo
- f-divergences in linear transport

3 Summary

Background

Yu

Introduction Background

.

Research Conter

Different types of distributions with the same RMS moments

6 standard deviations Gaussian

Water Bag

Clear differences exist between distributions, how to quantify?

- ▶ Method 1: Using RMS moments \rightarrow No difference? X
- Method 2: Comparing distribution differences point by point.

Beam 4D transverse phase space tomography

- As more profiles are selected, the reconstructed distribution increasingly approaches the real distribution.
- How to measure the degree of difference between them?
- **Demands:** Accurately quantifying the difference between two beam distributions in high-dimensional phase space.

Evaluating the

Use of f-Divergence

Background

Background

Significance: It's crucial for the interpretation of experimental and simulation results. Methods: Using statistical divergences.

f-divergences

Introduction Background f-divergences

Research Conten Summary

The f-divergences are a common class of methods used to measure the difference between two probability distributions, defined as follows:

$$D_f[p(\mathbf{x})||q(\mathbf{x})] := \int q(\mathbf{x}) f\left[\frac{p(\mathbf{x})}{q(\mathbf{x})}\right] d^n \mathbf{x}$$

- $f(\cdot)$ is a convex function and satisfies f(1) = 0;
- Different $f(\cdot)$ correspond to different statistical divergences:

Name	f(t)	$D_f[p(\mathbf{x}) q(\mathbf{x})]$
Kullback-Leibler	t ln t	$\int p(\mathbf{x}) \ln \left[\frac{p(\mathbf{x})}{q(\mathbf{x})} \right] d^n \mathbf{x}$
Jensen-Shannon	$\frac{1}{2}\left[(t+1) \ln \left(\frac{2}{t+1} \right) + t \ln t \right]$	$\frac{1}{2} \int \left\{ q(\mathbf{x}) \ln \left[\frac{2q(\mathbf{x})}{p(\mathbf{x}) + q(\mathbf{x})} \right] + p(\mathbf{x}) \ln \left[\frac{2p(\mathbf{x})}{p(\mathbf{x}) + q(\mathbf{x})} \right] \right\} d^{n}\mathbf{x}$
Total Variation	$\frac{1}{2} t-1 $	$\frac{1}{2}\int p(\mathbf{x}) - q(\mathbf{x}) \mathrm{d}^n \mathbf{x}$
Squared Hellinger	$(\sqrt{t}-1)^2$	$\int \left[\sqrt{p(\mathbf{x})} - \sqrt{q(\mathbf{x})}\right]^2 \mathrm{d}^n \mathbf{x}$

Four forms of f-divergences; $x \in \mathbb{R}^n$, $t = p(\mathbf{x})/q(\mathbf{x})$

f-divergences give the total contribution of differences at all points.

Quadratic form expression of beam distributions with elliptical symmetry; $\mathbf{x} = (x, x', y, y')^T$; Σ is a covariance matrix composed of 10 independent second-order moments. 6/

6/27

- Introduction Research Content D_f in Different Types
- D_f and Mismatch Fact
- Dr and RMS Emittance
- Standard Values
- Discussion on D_K
- D_f Assign Weights to Core, Tail and Halo
- Linear Transport
- Summary

- $\blacktriangleright\ \rho_1$ and ρ_2 have the same $\Sigma,$ but different distribution types
 - The beam distributions are matched: $M_x = M_y = 0$
 - The RMS emittance is the same: $\frac{\varepsilon_x}{\varepsilon_{x0}} = \frac{\varepsilon_y}{\varepsilon_{y0}} = 1$
- We have directly calculated the divergence values between the following distributions using mathematical integration:

$ ho_1(\mathbf{x})$, $ ho_2(\mathbf{x})$	D_{KL}	D_{JS}	D_{TV}	D_{Hel}
Parabolic, Gaussian	0.185837	0.054823	0.226909	0.262902
Water Bag, Gaussian	0.495922	0.134071	0.391299	0.407679
Water Bag, Parabolic	0.231856	0.071380	0.223872	0.309006

The f-divergences between different distributions with the same RMS emittance.

For two different types of beam distributions, as long as their Σ are the same (regardless of the values), the D_f between them is fixed.

Introduction Research Content D; in Different Types

D_f and Mismatch Factor

- Dr and RMS Emittan
- Standard Values
- Discussion on D_{KI}
- D_f Assign Weights to Cor Tail and Halo
- Linear Transpo
- Summary

f-divergences in Relation to Mismatch Factors

Theorem

In the $(x_1, x'_1, x_2, x'_2, \dots, x_i, x'_i, \dots, x_n, x'_n)$ phase space (2n-D), given two uncoupled beam distributions with elliptical symmetry, the f-divergences between them are uniquely determined by the mismatch factors in the 2D subspaces represented by the elements of the set { $(x_i, x'_i) | i = 1, 2, \dots, n$ }.

Verification Method:

- Generate the same mismatch factor in two different ways: Rotation, Scaling.
- Ensure the same ε_{rms} in the (x, x') and (y, y') phase spaces, but with second-order moments that are not completely identical.
- Check whether f-divergences obtained from these two methods is identical.

The relationship between 4D KL-divergence and transverse mismatch factor(Asymmetric) 9/27

Evaluating the **Simulation Verification** $| (M_x, M_y) \mapsto D_{JS}$ Use of f-Divergence $\rho_2(\mathbf{x})$ Parabolic Water Bag Gaussian $\rho_1(\mathbf{x})$ 0.40 0.35 0.16 0.25 0.30 D_f and Mismatch Factor å Gaussian 5cale, M, = 0.0 Scale M = 0.0 Basic M = 0.0 Rotate, M. = 0. _____ Scale, M. = 0.0 Scale M. = D.S. - Scale, M. = 0.1 --- Fictate. M, = 0.0 --- Babate, M. = 0.8 Rotate. N. = 0. 5cale, M. = 1.0 - Scale M = 1.0 - Scale, M. = 1.1 --- Entate, M. = 1.0 Babata M = 1.0 ---- Rotate, M. = 1.0 02 04 06 08 10 12 14 Ma 1.0 1.2 1.4 0.6 0.0 1.0 1.2 1.4 M. 0.2 0.4 0.6 0.8 0.2 0.4 0.25 0.30 0.24 80 Parabolic å Scale, N, = 0.0 Scale, PL = 0.0 Scale, M, = 0.0 Batate, M. = 0.0 Robats, M. o. G. - Scale, N. = 0.6 Grain M = 0.6 Scole M. - 0.1 0.0140 M = 0.6 and Redate M = 0.6 - Scalo M = 1.8 - Scole M -= 1.1 ---- Bataro M -- 1.4 and Redate M .- 1 0.2 0.4 0.6 M. 0.8 1.0 1.2 1.4 0.4 0.** 0.6 0.8 ×, 0.40 Water Bag ŝ G 0.2 ž - Scale, M. = 0.6 Scale, M. = 0.4 BOTATE M. = 0 0.10 - Scale, H. = 1.0 Scale, M. = 1.0 Robates, PA, = 1.0 0.4 0.6 0.8 10 1.2 1.4 M 0.0 0.4 0.8 0.8 1.0 1.2 1.4 M 0.4 0.6 0.8 0.2 0.2 1.0 1.2 1.4

The relationship between 4D JS-divergence and transverse mismatch factor(Symmetry) 10/27

IMP

The relationship between 4D TV-distance and transverse mismatch factor(Symmetry) 11/27

The relationship between 4D Hellinger-distance and transverse mismatch factor(Symmetry)^{2/27}

- The above figures illustrate how f-divergences vary with mismatch factors.
 - The curves obtained from the two methods coincide (corresponding to the solid and dashed lines in the figure), indicating:

Discussion of Simulation Results $| (M_x, M_y) \mapsto D_f$

The relationship between 4D f-divergence and transverse mismatch factors

In the (x, x', y, y') phase space, for two beam distributions with elliptical symmetry and no x-y coupling, the f-divergences between them are uniquely determined by the two transverse mismatch factors.

This relationship can be utilized to provide an assessment standard for these popular divergences.

y Assign Weights to

Dr and Mismatch Factor

Linear Transport

Summary

Yu

Introduction Research Content D_f in Different Types

D_f and Mismatch Factor

- D_f and RMS Emittand
- Standard Value
- Discussion on D_{μ}
- D_f Assign Weights to Core. Tail and Halo
- Linear Transport
- Summary

Same Distributions

Assessment Heatmap for 4D f-divergences $|(M_x, M_y) \mapsto D_f$

Different Distributions

Yu

Introduction Research Content Dr in Different Types Dr and Mismatch Factor Dr and RMS Emittance Standard Values

Discussion on D_{Kl}

D_f Assign Weights to Core, Tail and Halo

Linear Transport

Summary

Theorem

In the $(x_1, x'_1, x_2, x'_2, \dots, x_i, x'_i, \dots, x_n, x'_n)$ phase space (2n-D), given two beam distributions with elliptical symmetry and no coupling, if the mismatch factors $\{M_i \mid i = 1, 2, \dots, n\}$ in the 2D subspaces represented by $\{(x_i, x'_i) \mid i = 1, 2, \dots, n\}$ are all zero, then the f-divergences between them depend only on the scaling ratios of the RMS emittances $\{\varepsilon_i | \varepsilon_{\varepsilon_0} \mid i = 1, 2, \dots, n\}$ in these 2D subspaces.

Simulation Content

Premise: The beam distributions are matched: $M_x = M_y = 0$ Operation: Vary the RMS emittance in the (x, x') and (y, y') sub-phase spaces:

$$\varepsilon_x = k_1 \varepsilon_{x0}, \quad \varepsilon_y = k_2 \varepsilon_{y0}, \quad \varepsilon_{4D} = k_1 k_2 \cdot \varepsilon_{x0} \varepsilon_{y0}$$

Goal: Investigate how the f-divergences vary with the $\frac{\varepsilon_x}{\varepsilon_{x0}}$ and $\frac{\varepsilon_y}{\varepsilon_{y0}}$.

The relationship between 4D KL-divergence and RMS emittance

17/27

The relationship between 4D TV-distance and RMS emittance

The relationship between 4D Hellinger-divergence and RMS emittance

- ntroduction Research Conte
- D_f and Mismatch Factor
- Df and RMS Emittance
- Standard Values
- Discussion on D_R
- D_f Assign Weights to Core, Tail and Halo
- Linear Transport
- Summary

Discussion of Simulation Results $\left| \left(\frac{\varepsilon_x}{\varepsilon_{x0}}, \frac{\varepsilon_y}{\varepsilon_{x0}} \right) \mapsto D_f \right|$

- The above figures illustrate how f-divergences vary with $\varepsilon_x/\varepsilon_{x0}$ and $\varepsilon_y/\varepsilon_{y0}$.
- ► Using ε_(x|y)/ε_{(x|y)0} = 1 as the boundary, D_{JS}, D_{TV} and D_{Hel} satisfy the following symmetry(values are the same), but D_{KL} does not:
 - Distributions of the same type:

When $M_x = M_y = 0$, the f-divergences depend solely on $\frac{\varepsilon_x}{\varepsilon_{x0}}$ and $\frac{\varepsilon_y}{\varepsilon_{y0}}$. This relationship can be utilized to provide a second assessment standard for the f-divergence.

Yu

- Introduction Research Conte D₁ in Different Types
- D_f and Mismatch Facto

Df and RMS Emittance

- Standard Values
- Discussion on D_K
- D_f Assign Weights to Core, Tail and Halo
- Linear Transport
- Summary

Assessment Heatmap for 4D f-divergences $\left| \left(\frac{\varepsilon_x}{\varepsilon_0}, \frac{\varepsilon_y}{\varepsilon_0} \right) \right| \rightarrow D_f$

Same Distributions

lensen-Shannon Divergence

Different Distributions

ntroduction Research Conter D_f in Different Types D_f and Mismatch Fact

Discussion on D_{KI}

D_f Assign Weights to Core Tail and Halo

Linear Transport

Summary

Standard Values

- > We have set assessment standards using ideal distributions.
- This can offer a rough D_f assessment reference for non-ideal distributions.
 - $\blacktriangleright \underbrace{\rho_{non-ideal}}_{\text{closest to}} \underbrace{\rho_{ideal}}_{\text{formula}} \text{(Gaussian? Parabolic? Water Bag?)}$
 - Corresponding to the existing evaluation heatmaps.

- Introduction Research Conte D_f in Different Types
- D_f and Mismatch Fact
- D_f and RMS Emitta
- Standard Values
- Discussion on D_{KL}
- D_f Assign Weights to Core Tail and Halo
- Linear Transport
- Summary

$$D_{\mathcal{K}L}\left[\rho_1||\rho_2\right] \coloneqq \int \rho_1(\mathbf{x}) \ln\left[\frac{\rho_1(\mathbf{x})}{\rho_2(\mathbf{x})}\right] \, \mathrm{d}^n \mathbf{x}$$

- Asymmetric
 - $\blacktriangleright \quad \frac{\varepsilon_x}{\varepsilon_{x0}} = \frac{\varepsilon_y}{\varepsilon_{y0}} = 1: \quad D_{KL} \left[\rho_1 || \rho_2 \right] \neq D_{KL} \left[\rho_2 || \rho_1 \right], \text{ violates triangle inequality}$
 - $\blacktriangleright \quad M_x = M_y = 0: \ D_{KL,\frac{\kappa_{(x|y|2)}}{\kappa_{(x|y|1)}}} \neq D_{KL,\frac{\kappa_{(x|y|2)}}{\kappa_{(x|y|1)}}}; \ D_{KL,\frac{\kappa_{(x|y|2)}}{\delta_{(x|y|1)}}} \neq D_{KL,\frac{\kappa_{(x|y|2)}}{\delta_{(x|y|1)}}}.$ Not in line with reality.
- Non-fixed evaluation standards
 - $\rho_1 = \rho_2 = 0$: $D_f = 0$
 - $\blacktriangleright \quad \rho_1 \to 0, \rho_2 \neq 0 : D_f = \lim_{\rho_1 \to 0} \rho_1 \ln(\rho_1) = 0$
 - $\blacktriangleright \quad \rho_2 \to 0, \rho_1 \neq 0 : D_f \to \infty$

In this case, ρ_2 can be set to a small value c, but D_{KL} varies with different c,

thus leading to different assessment standards .

Yu

Introduction Research Conte D_l in Different Types D_l and Mismatch Fac D_l and RMS Emittan

Standard Values

Discussion on $D_{\rm KL}$

D_f Assign Weights to Core, Tail and Halo

Linear Transport

Summary

D_f in 4D spherical coordinates:

$$D_{f}[\rho_{1}'(r)||\rho_{2}'(r)] = \int \rho_{2}'(r)f\left[\frac{\rho_{1}'(r)}{\rho_{2}'(r)}\right] \cdot r^{3}\sin^{2}\psi_{1}\sin\psi_{2}\,\mathrm{d}r\mathrm{d}\psi_{1}\mathrm{d}\psi_{2}\mathrm{d}\psi_{3}$$

The variation of $\rho'(r)$ with integration radius

The variation of D_{TV} with integration radius 24/27

Yu

Introduction Research Conte D_l in Different Types D_l and Mismatch Fac D_l and RMS Emittand

Standard Values

Discussion on D_{Kl}

D_f Assign Weights to Core, Tail and Halo

Linear Transpor

Summary

Distribution area	Gaussian-Water Bag			Gaussian-Parabolic		
Biotilibation area	JS(%)	TV(%)	Hel(%)	JS(%)	TV(%)	Hel(%)
Core	14.04	24.56	33.99	14.86	27.86	34.48
Tail	34.49	50.00	29.34	27.28	51.97	23.65
Halo	51.47	25.44	36.67	57.86	20.17	41.87

The sensitivity of various divergences to different beam distribution areas

Priority of divergence selection

- $\blacktriangleright \quad \text{Core:} \quad D_{Hel} \rightarrow D_{TV} \rightarrow D_{JS}$
- ▶ Tail: $D_{TV} \rightarrow D_{JS} \rightarrow D_{Hel}$
- $\blacktriangleright \text{ Halo: } D_{JS} \rightarrow D_{Hel} \rightarrow D_{TV}$

Gaussian-Water Bag

Gaussian-Parabolic ;/27

Yu

Introduction Research Conten D_i in Different Types D_i and Mismatch Facto D_i and RMS Emittance Standard Values Discussion on D_{KL}

D₁ Assign Weights to Co Tail and Halo

Linear Transport

Summary

f-divergences in Linear Transport

Theorem

The f-divergences are conserved during the linear transport process.

- ▶ $D_f(\rho_1||\rho_1^*)$ not necessarily equal to $D_f(\rho_2||\rho_2^*)$;
- $D_f(\rho_1 || \rho_2) = D_f(\rho_1^* || \rho_2^*)$ always holds true.

This conclusion may be utilized when describing beam transport using D_{f} .

Summary

Introduction Research Conte Summary

- 1 Encouraging results from the quantification of beam distribution differences using common f-divergences
 - Addition tool to analyze beam simulations and experiments
- 2 f-divergence values from common 4D distributions can provide assessment standards
 - Only depend on mismatch factors and scaling ratios of the RMS emittances
- 3 Choice of f-divergences is goal-dependent
 - Different emphasis on core, tail and halo
- 4 Properties under transport have much to be explored
 - Conserved under linear transport

Thanks !