Beam size measurement

with gratings at BEPCII

Zhang Wan 2024-09-10

Contents

- Background
- Theory
- Setup
- Results
- Potential

higher coherence, higher brightness, lower emittance and smaller beam sizes

Light source size of beamline

Beam size measurement

Synchrotron light

(unstoppable, natural photo isolation, the light source size is almost equal to the beam size)

visible light { imaging directly interference(double-slit interferometer)

Method by using X-ray

Methods	X-ray pinhole imaging	X-ray double-slit interferometer	X-ray focused imaging (KB mirror, CRL, FZP)	Grating Talbot effect
optical device	simple	complex	complex	simple
Measuring Direction	Any direction	One direction	Any direction	Any direction
real-time measurement	Yes	Yes	Yes	Νο
Measurable beam size (μm)	>10µm	about 5µm	about 5µm	<5µm

*Marathe S et al. Optics express, 2014, 22(12): 14041-14053.

*Shi X et al. Applied Physics Letters, 2014, 105(4): 041116.

SSRF (33keV, measured:23μm, theoretical :22 μm)

*Qi J C et al. Acta Phys. Sin. 2014, 63(10): 104202.

Theory

8

Theory

Setup

Setup

			mų 50			
orption grating	phase grating	Parameters		111		
2.4µm	2.4µm	Period				
0.51±0.01	0.53±0.01	Duty Cycle	(a) phase grating			
2.5×2.5mm ²	>2.5×2.5mm ²	Area	a sharene ya ayar da ayar a			
old 14±1µm	Polymer 18.6µm	Height				
µm Polyimide	10µm Polyimide	Substrate				
2.4μm 0.51±0.01 2.5×2.5mm ² old 14±1μm μm Polyimide	2.4μm 0.53±0.01 >2.5×2.5mm² Polymer 18.6μm 10μm Polyimide	Period Duty Cycle Area Height Substrate	aase grating	(a) pha		

(b) absorption grating

Results

Moire fringe images

d=40mm d=68mm d=96mm(d_T)+ $d=164mm(2d_T)$ d=140mm d=200mm₽ $d=236mm(3d_T)$ d=260mm d=308mm(4d_T) d=360mm d=400mm(5d_T)+

θ=2°

The interference images at different Talbot distances

Results

The visibility shows periodic oscillations. The local maximum of visibility at fractional Talbot distance decreases gradually due to the partial coherence of the source.

spatial coherence length $\xi_y = 5.592 \mu m$ source size $\sigma_y = 68.19 \mu m$

Results

contrast experiment

The visible light beamline of BEPCII

the vertical beam size measurement with a double-slit interferometer

The comparison of vertical emittance derived from two methods

 $\sigma_y^2 = \epsilon_y \beta_y$

Parameters	3W1	visible light beamline	
Method	grating self- imaging	visible light imaging	
β _v	3.2877m	20.975m	
σ	68.19µm	171.4µm	
ε _v	1.41nm•rad	1.40nm•rad	

The results of the two methods agree very well

Potential

4th Generation

higher coherence	stores ring physical parameters	value	unit	
lower emittance	linear section with high β			
smaller beam size	Beam size in horizontal direction/ and vertical direction(rms)	16.7/5.1	μm	
$m \in \left(2\lambda d_{max}\right)^{1/2}$	beam divergence angle in horizontal direction/ and vertical direction(rms)	1.65/0.53	μrad	

$$\sqrt{\frac{2ln\gamma}{n(1-n)}}\xi_{\theta} < p_{\theta} < \left(\frac{2\lambda d_{max}}{2n-1}\right)^{1/2}$$

The suitable grating period can be derived according to various conditions.

HEPS

References

[1] D. K. Pogoreliy et al., "Real-time phase-contrast imaging at the Kurchatov synchrotron radiation source", Nucl. Instrum. Methods, vol. 603, pp. 167-169, 2009. doi: 10.1016/j.nima.2008.12.146

[2] W. Yang et al., "Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure", Nat. Commun., vol. 4, p. 1680, 2013. doi:10.1038/ncomms2661

[3] A. Sakdinawat and D. Attwood, "Nanoscale X-ray imaging", Nat. Photonics, vol. 4, no. 12, pp. 840–848, 2010. doi:10.1038/nphoton.2010.267

[4] A. D. Garg et al., "Design of synchrotron radiation interfer-ometer (SRI) for beam size measurement at visible diagnos-tics beamline in Indus-2 SRS", Nucl. Instrum. Methods, vol. 902, pp. 164-172, 2018. doi:10.1016/j.nima.2018.06.024
[5] T. Mitsuhashi, "Beam profile and size measurement by SR interferometers", in: Proceedings of the Joint US–CERN–Japan–Russia School on Particle Accelerators, World Scien-tific, Montreux and Geneva, Switzerland, 1999, pp. 399–427. doi: 10.1142/9789812818003, 0018

[6] C. Thomas, G. Rehm, and I. Martin, "X-ray pinhole camera resolution and emittance measurement", Phys. Rev. Spec. Top-AC., vol. 13, no. 022805, 2010. doi: 10.1103/PhysRevSTAB.13.022805

[7] A. Garg et al., "Design of x-ray diagnostic beamline for a synchrotron radiation source and measurement results", Nucl. Instrum. Methods Phys. Res. A, vol. 754, pp. 15-23, 2014. doi:10.1016/j.nima.2014.04.013

[8] W. Leitenberger et al., "Double pinhole diffraction of white synchrotron radiation", Physica B, vol. 336, pp. 63–67, 2003. doi: 10.1016/S0921-4526(03)00270-9

[9] Y. Suzuki et al., "X-ray microbeam with sputtered-sliced Fresnel zone plate at SPring-8 undulator beamline", Nucl. Instrum. Methods, vol. 467, pp. 951-953, 2001. doi: 10.1016/S0168-9002(01)00532-0

[10] A. Alatas et al., "Improved focusing capability for inelastic X-ray spectrometer at 3-ID of the APS: A combina-tion of toroidal and Kirkpatrick-Baez (KB) mirrors", Nucl. Instrum. Methods, vol. 649, pp. 166-168, 2011. doi: 10.1016/j.nima.2010.11.068

References

[11] N. Samadi, X. Shi, L. Dallinc and D. Chapmanc, "A real-time phase-space beam emittance monitoring system", J. Synchrotron Rad., vol. 26, pp. 1213–1219, 2019. doi: 10.1107/S1600577519005423

[12] Y. Kagoshima et al., "Measurement of the horizontal beam emittance of undulator radiation by tandem-double-slit optical system", J. Synchrotron Rad., vol. 27, pp. 799–803, 2020. doi: 10.1107/S1600577520004415

[13] S. Marathe et al., "Probing transverse coherence of x-ray beam with 2-D phase grating interferometer", Optics Ex-press, vol. 22, pp. 14041-14053, 2014. doi: 10.1364/oe.22.014041

[14] X. Shi et al., "Circular grating interferometer for map-ping transverse coherence area of X-ray beams", Appl. Phys. Lett., vol. 105, p. 041116, 2014. doi: 10.1063/1.4892002

[15] M. Born and E. Wolf, "Principles of Optics", 7th ed. University Press, Cambridge, 1999.

[16] P. Cloetens, J. P. Guigay, C. De Martino, J. Baruchel, and M. Schlenker, "Fractional Talbot imaging of phase grat-ings with hard x rays", Opt. Lett., vol. 22, pp. 1059–1061, 1997. doi: 10.1364/OL.22.001059

[17] J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mok-so, and M. Schlenker, "The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays", J. Synchro-tron Radiat. Vol. 11, no.6, pp. 476–482, 2004. doi:10.1107/S0909049504024811

[18] F. Pfeiffer et al., "Shearing interferometer for quantify-ing the coherence of hard X-ray beams", Phys. Rev. Lett., vol. 94, no. 16, p. 164801, 2005. doi: 10.1103/PhysRevLett.94.164801

[19] I. Zanette, C. David, S. Rutishauser, and T. Weitkamp, "2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer", in X-Ray Optics and Microanalysis, Proceedings of the 20th International Congress, CP1221, M. Denecke and C. Walker, eds. (Ameri-can Institute of Physics, pp. 73–79, 2010.

Thank you very much!