IBIC 2024 Beijing, China September 9-13, 2024

Development of ultra-fast diamond-sensor based systems for advanced accelerator diagnostics

Santa Cruz Institute for Particle Physics and the University of California, Santa Cruz Sponsor: US Dept of Energy

Talk Outline

The elements of this presentation include:

- The Advanced Accelerator Diagnostics (AAD) Collaboration
- Diamond as a sensor material
- Warm-up: 50 MHz position-sensitive pass-through diagnostic
- Towards high bandwidth
- Integrated multi-GHz detection system idea
- Readout studies (electronics only)
- Signal path studies (sensor and signal path only)
- Speculation about applications
- Summary and Prospects

The Advanced Accelerator Diagnostics Collaboration

- Consists of six University of California Campuses and National Labs
 - UC Santa Cruz (Santa Cruz Institute for Particle Physics), UC Davis, UC Santa Barbara
 - Lawrence Berkeley NL, Los Alamos NL, SLAC NL
- Funded by the University of California Office of the President and the US Department of Energy
- Developing diagnostic systems for XFEL, synchrotron and proton beams
- Also performing basic diamond sensor R&D (transport properties, radiation tolerance)
- Work in this talk driven by XFEL developments but applications likely broader

Diamonds Sensor Characteristics

Some aspects of diamond as a sensor material

- Large electron/hole pair creation energy (13.3 eV vs. 3.6 ev for Si)
- Fast transport (200 μm/nsec vs. 100 μm/nsec for Si)
- Highest thermal conductivity of any natural material
- Superior radiation tolerance
 - No appreciable leakage current to fluence > 5x10¹⁶ n_{eq}/cm²
 - Significant charge collection efficiency remains
- Low X-ray absorption (K-shell energy <300 eV)
- Commercially available "electronic grade" CVD diamond has essentially infinite carrier lifetime

Second (bolded) characteristic is most important for this talk.

Warmup: 50 MHz Quad Pass-Through Diagnostic

Cavity-Based XFEL (CBXFEL) Development (SLAC/ANL)

- Requires position/intensity measurement of recirculating beam
- > 20 MHz recirculation rate

→ Design multi-MHz quadrant diagnostic

AAD 50 MHz Quadrant Diagnostic

4.0 mm

Passive shaping network (x4)

Test at SLAC LCLS, April 2022 (1D beam sweep)

Bruce Schumm

50 MHz Quad Diagnostic Performance

Bruce Schumm

to be submitted to J. Synchrotron Radiation

3 μm resolution small fraction of observed pulse-by-pulse jitter

Question: How to do this at 5+ GHz?

Original motivation: intended high repetition-rate XFEL facilities; multi-GHz operation via pulse splitting and delay

- LCLS to 3 GHz [F.J. Decker et al., Proceedings of FEL2010]
- LANL to 10 GHz [R.W. Garnett, Proceedings of LINAC2016]
- Other applications conceivable (see end of talk for some)

Above 1-2 GHz, enter "RF regime" where inductance and electrodynamics starts to take hold

→ Compact, integrated approach

Entering second year of three-year US Dept of Energy-funded project to explore this question

Components of the High Bandwidth Problem

Problem factorized into 4 challenges, all significant in RF regime (>1-2 GHz)

Charge Collection

Seems fast and efficient to an instantaneous generation of 10¹⁶ charges/cm³ [J Bohon et al., J Synch Rad 29 292 (2022)]

Signal Path

- How fast the signal can return to ground without ringing
- Signal processing (amplification/buffering and digitization)
 - High speed electronics development

□ Interfacing of signal path with signal processing features

RF radiation and dielectric absorption during transport a concern

Bruce Schumm

IBIC 2024

Focus of this work

Compact Signal Path

- Make use of RF industry components to develop mmscale signal path
- Limit inductance, capacitance to push LC resonance above 10 GHz

Integrate with localized readout to eliminate signal transport degradation

Bruce Schumm

Simulation of Compact Signal Path (ANSYS HFSS)

- Simulate with models of industrial components as realistic as possible
- Fabrication techniques established and verified in the SCIPP laboratory

- Simulation suggests 10Ω optimal for signal shaping
- 10Ω resistor doubles as sensing element
- Signal FWHM of ~120 ps in response to 6 GHz excitation suggestion > 5 GHz signal path response

The compact signal path is integrated with the highbandwidth **FastPulse Precision Sample** (FPS) ASIC

- ASIC design: LBNL Integrated Circuit Group
- Integration & Characterization: SCIPP Laboratory

Bruce Schumm

The FastPulse Precision Sample ASIC

The FPS ASIC: Design Specifications

- High-bandwidth (~10 GHz) amplifier/buffer system
- Feeds an internal 45-element switched capacitor array
- Variable sampling rate, up to 40 Gs/s
- Four channels (quadrant sensor system)

Spec	Value	Unit
Bandwidth	11	GHz
Sample Rate	40	Gs/s
Capture Window	1-2	ns
Readout Rate	500	MHz
Resolution	10	Bits

How does this device perform?

Bruce Schumm

Readout of FPS Switched Capacitor Array

- Stored voltage levels clocked out at 2 MHz
- By sweeping pulser delay across full ns capture window, digitization period measure to be 28 ps

Bruce Schumm

FPS Electronic Noise

- Observed electronic noise for each of the 45 SCA elements ullet
- Variance of 1000 measurements of pedestal level •
- Mean σ_v = 550 μ V lacksquare

Measured Output Noise

Bruce Schumm

FPS Response / Bandwidth

- Compare input trace (fast pulser) to output trace
- For output trace, use measured 28 ps sampling increment
- Evaluate bandwidth using 20%-80% rise time τ_{20-80}

Bandwidth $\approx 0.23/\tau_{20-80}$

- Input rise time: $\tau_{20-80} = 47$ ps
- Output rise time: τ_{20-80} = 67 ps
- FPS contribution: $\tau_{20-80} = \sqrt{(67^2 47^2)} = 48 \text{ ps} \rightarrow 5 \text{ GHz}$ **IBIC 2024** 17 **Bruce Schumm**

FPS Linearity and Dynamic Range

Digression: FPS Timing Prospects

- There are many ways to degrade the timing resolution of a system
- One of the most fundamental is electronic noise
- Let's look at this one and ignore all others (i.e. take the following with a huge "grain of salt")

For constant-fraction discrimination,

Bruce Schumm

Next Steps: Signal Path

Next step is to add sensor/signal path and take to test beam

- Working on it (end of calendar year)
- But for now test signal path with independent system based on discrete 13 GHz amplifier

Bruce Schumm

Direct study of compact signal path

Caveat: this preliminary implementation is on standard FR4 PC board dieletric, which is known to degrade GHz signals

Bruce Schumm

Compact Signal Path Result

Excite with alpha particles (Americium source)

For diamond, 95 ps 10-90% rise time consistent with 3.8 GHz signal

We expect that switching PCB dielectric from FR4 to Rogers4350b will provide further improvement. New board in fabrication now.

Towards a Multi-GHz Position Sensing System

- Operating 50 MHz position-sensitive system being pushed into multi-GHz regime
- Approach is design of compact, integrated detection system
- First prototype of "FPS" ASIC performing at or above 5 GHz
- Compact signal path approach looks promising to achieve 5 GHz
- Awaiting full system test (for planar sensor) and independent high-bandwidth signal path results
- Design of quadrant (position sensitive) system underway
- Detection system hints at prospect for femtosecond timing
 - But far from proven
- Applications outside of Accelerator Physics may be offered
 - e.g. inertial confinement (ICF) burn width ~100 ps, commensurate with FWHM of 5 GHz signal

Acknowledgements

Thank you to:

US Department of Energy Office of Science

- Accelerator and Detector Research (Basic Energy Sciences)
- Accelerator R&D and Production (High Energy Physics)

University of California Office of the President

• Laboratory Fees Research Program