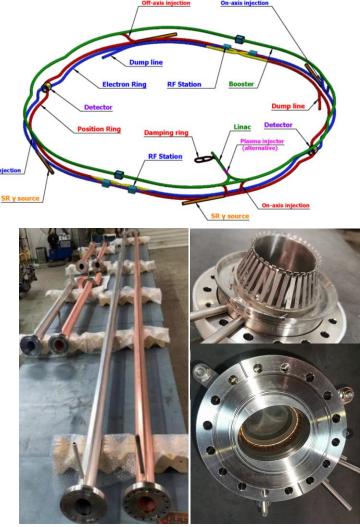
70th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders

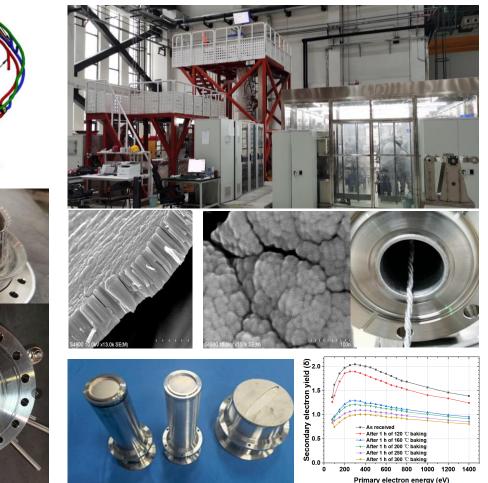
中國科學院為能物昭納完所 Institute of High Energy Physics Chinese Academy of Sciences

EXAC 2 0 2 5

CEPC Vacuum system development progress

- Preview of CEPC vacuum system
- Collider rings, Booster ring, Linac Vacuum
- Production line development of NEG coating/ Spray for heating film in EDR
- Components development in EDR
- Summary


Preview of CEPC vacuum system


Machine and Vacuum Parameters

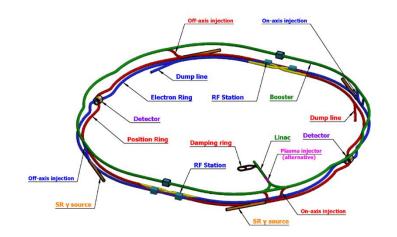
	Ε	Ι	ρ
	Gev	А	m
Higgs	120	0.0167	10700
W	80	0.084	10700
Ζ	45.5	0.803	10700
tt	180	0.0033	10700

Accelerator	length/m
LINAC	1,601+335
Damping ring	147
Booster	100,000
Collider	200,000
Transport line	4,680
Total length/m	306,763

◆ Technical developments in TDR

Those prototypes have a good application in HEPS.

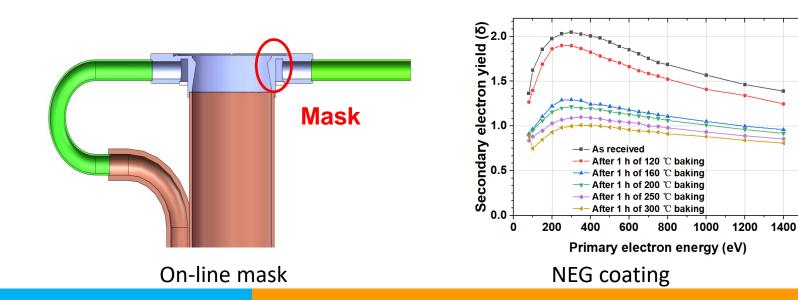
Vacuum requirements and configuration



	Energy	Material	Cross Section/mm	Length/m	Dynamic pressure /Torr
LINAC	30 GeV	Stainless steel, copper	Φ20~30	1,601+ 335 (BTL)	Acc $<2 \times 10^{-7}$ E-gun $<2 \times 10^{-8}$
Damping ring	1.1 GeV	Extruded aluminum 6061	Ф30/AI 6061	147	<2×10 ⁻⁸
Booster	30 to 180 GeV	Extruded aluminum 6061	Φ56/thickness of 2mm	100,000	$<3 \times 10^{-8}$ tt<4 × 10^{-8}
Collider	45.5~180 GeV	Extruded copper, NEG film SEY<1.2 Φ56/thickness of 2m		100,000×2	$Z < 8 \times 10^{-10}$ tt<1 × 10 ⁻⁸
MDI	45.5~180 GeV	Copper/tungsten alloy, NEG film	(0)		<3×10-9
LTB	30 GeV	Stainless steel	Ф56	3,000	<1×10-7
BTC(CTB)	6 GeV	Stainless steel	Ф56	240×6	<1×10 ⁻⁷
DL	1.1 GeV	Stainless steel	Ф30	240	<1×10-7

Layout & configuration of Collider

	Classification	length/m
	Arc beam pipe	78752
	Straight section beam pipe	
	RF Substitute pipe	1192
	RF system	352
	Insertion and extraction	286
collider	collider Manifold for SIP	
	Bellows	2082
	BPM	300
	Manifold for Gauge & RGA	247
	Detector 1	12
	Detector 2	12
	Collider section	7000
	Total length	100000

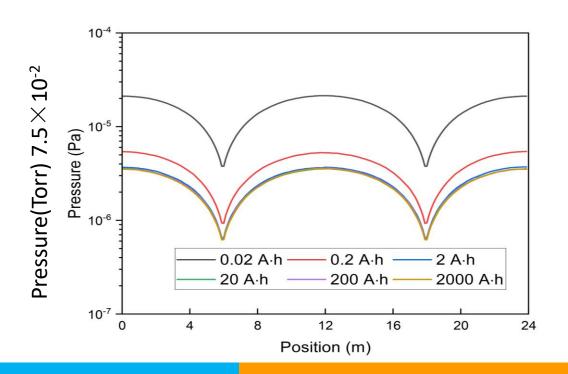


Parameter	e⁺ & e⁻
Energy [GeV]	45.5~180
Beam current [A]	0.0033~1.39
Circumference [m]	100,000 × 2
Bending radius [m]	10,700
Beam pipe material	Extruded copper (water-cooled) NEG coating
Beam pipe shape (mm)	Φ56/thickness of 2mm
Pump type in arcs	SIP

Modes	E (Gev)	Beam gas scattering lifetime (h)	Vacuum requirement (Torr)
Higgs	120	10	2 × 10 ⁻⁹
W	80	5	1.5 × 10 ⁻⁹
Z	45.5	3	8 × 10 ⁻¹⁰
tt	180	15	1 × 10 ⁻⁸

Collider rings Vacuum requirements and configuration

- Good beam lifetime must be achieved soon after the initial start-up with a stored beam.
- The vacuum system must be capable of quick recovery after sections are exposed to air for maintenance or repairs.
- The chamber wall must be as smooth as possible to minimize electromagnetic fields induced by the beam.
- NEG coating of 200nm is employed to suppress e-cloud of positron ring and absorb residual gases simultaneously. SEY will blow 1.2 after 24h activation of 180°C and could even lower under higher activation temperature.
- Similar to positron ring, NEG coating is proposed to vacuum chamber of electron storage ring to absorb extra gas load.



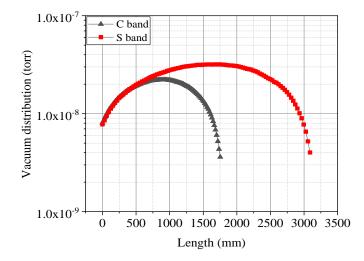
RF shielding bellows

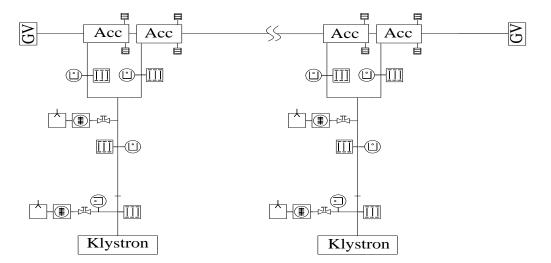
Layout & configuration of Booster

- Booster will work in four modes of higgs, W, Z, tt under 30MW and 50MW alternatively. 50MW is given to calculate the vacuum parameters as it has the highest energy and gas load.
- The main pumping process will then be followed by ion pumps distributed around the circumference at intervals of about 12 m.

Parameter	e+ & e-
Energy [GeV]	30~180
Beam current [A]	0.11~14.4×10 ⁻³
Circumference [m]	100,000
Bending radius [m]	11,380.8
Beam pipe material	Extruded Al
Beam pipe shape (mm)	Φ56/thickness of 2mm
Pump type in arcs	SIP
Dunamic proceuro /Torr	<3×10-8
Dynamic pressure /Torr	$tt < 4 \times 10^{-8}$

	Classification	length/m
	arc beam pipe	78428
	Straight section beam pipe	17010
	RF Substitute pipe	384
	RF system	96
h e e et e u	insertion and extraction	198
booster	Manifold for SIP	1250
	Bellows	850
	ВРМ	240
	Manifold for Gauge & RGA	1544
	total length	100000


Linac vacuum system


- The Linac vacuum system with a length of 1936m is divided into 59 sections. it consists of electron gun, bunching system, accelerating structures.
- Sputter ion pumps: 3431; Vacuum gauges: 1352; Gate valves: 60

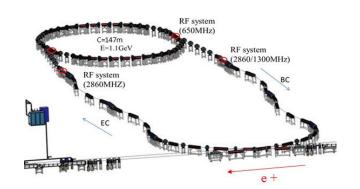
Section	Static pressure /Torr	Dynamic pressure /Torr
E-gun	<1×10-9	<2×10-8
Buncher	$< 5 \times 10^{-8}$	<2×10-7
Accelerating structure	$< 5 \times 10^{-8}$	<2×10 ⁻⁷
Waveguide	$< 5 \times 10^{-8}$	<5×10-7

• Most of the components are made of oxygen-free copper . The thermal outgassing rate is 1×10^{-11} Torr·l/s·cm².

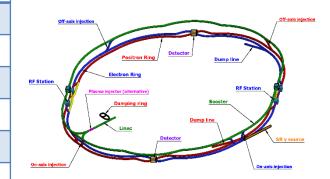
The static pressure distribution of a accelerator structure

Vacuum diagram of klystron and accelerator structures

Layout of Damping ring, Transport line



	Classification	length/m	
	arc beam pipe	119.0	E
	Straight section beam pipe	14.0	E
	RF Substitute pipe	0.0	
	RF system	3.0	0
DR	insertion and extraction	2.8	E
	Manifold for SIP	1.5	E
	Bellows	1.5	E
	ВРМ	4.0	
	Manifold for Gauge & RGA	1.5	P
	total length	147.3	


Parameter	e⁺ & e⁻
Energy [GeV]	1.1
Beam current [A]	0.012~0.024
Circumference [m]	147
Bending radius [m]	2.87
Beam pipe material	Extruded Al
Beam pipe shape (mm)	Φ30/thickness of 1
Pump type in arcs	SIP
Dynamic pressure /Torr	2×10 ⁻⁸

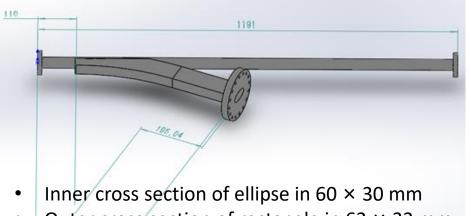
e⁺ & e⁻

45 GeV~180 GeV

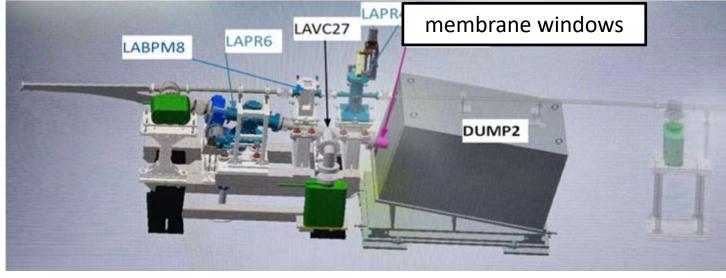
	Classification leng	gth/m	Note		Parameter	e+ &	
	linac to booster 3000		e- & e+ 1500 m		Linac to Damping Ring		
	booster to		0		Energy (GeV)	1.1 GeV	
	colider	960	Off axis: e- & e+ 240 m	On axis: e- & e+ 240 m Off axis: e- & e+ 240 m	Linac to Booster		
transport line	colider to		e- & e+ 240 m		Energy (GeV)	30 GeV	
	booster	480		Booster t	o Collider		
	damping ring 2	240	In & ex 120 m		Energy (GeV)	45 GeV~180	
	total length 4	680			Dynamic Pressure (Torr)	2e-8	

Damping ring vacuum system

• For the DR, with values of E = 1.1 GeV, $I = 0.012 \sim 0.024$ A, and $\rho = 2.87$ m, these equations give a total synchrotron radiation power of $P_{SR} = 1.08$ kW and a linear power density of $P_L = 60.1$ W/m.


The gas load under different beam energy and beam density

T	Mode	E	Ι	PSD	P _L	Q _{gas}	Q _{LSR}	Pave
1		Gev	A	Molecules/photon	W/m	Torr·L/s	Torr·L/s·m	Torr
		1.1	0.024	2.00E-06	60.1	1.28E-06	7.09E-8	1.78E-08

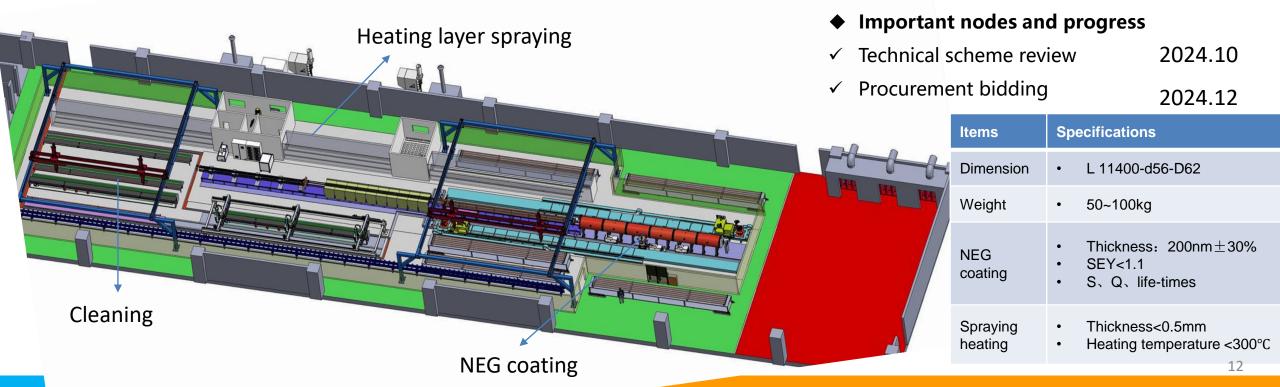

- With an effective pumping speed of 15 L/s and a distribution of 2 meters sputtering ion pumps, the vacuum value of 1.78×10^{-8} Torr will be reached.
- Due to the beam current of damping ring is low enough, SEY of aluminium vacuum chamber which do not need NEG coating or TiN coating could meet the requirement of physics.
- RF shielding Bellows with spring and contact fingers made of stainless steel will be employed to absorb the extension and the misalignment of vacuum chambers and other vacuum devices during installation.

Protypes of Dump chamber and membrane window

- CEPC
- The elliptical Ti thin membrane window of 170×10 mm with a thickness of 0.1 mm was welded on the s. s. plate with a diameter of 183 mm and a thickness of 5mm.

Outer cross section of rectangle in 62 × 32 mm

- Membrane windows
- The thickness of Ti window is 0.1mm
- Deformation test under vacuum: elliptical window is 0.4mm, circle window is 2.3mm;
- ultimate vacuum<5 ×10⁻¹⁰ Torr.


CEPC vacuum chamber production line

Requirement

- Due to the difference in length, two production lines will be used to complete the production of vacuum chambers for the CEPC collider. The quantity of NEG coating and spraying facilities for the two lines varies to match the production speed.
- > With two production lines, the all vacuum chambers of collider will be finished in 5 years.
- Advantages

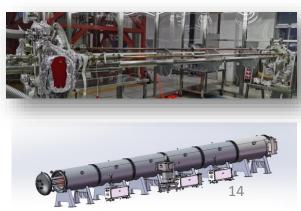
More stable process, less manpower, less NEG coating facility, more adaptive capacity in production, etc.

Production line composition

Classification	Sub-devices	Parameters	Note
Electron-beam welder	Electron-beam gunPower supplyVacuum chamber	 Meets the Length of 11.4m vacuum chamber 6 working position 	Design and manufacturing
Brazing	Mechanical holderPower supply	 350°C 11.4m long 	Low temperature brazing in air by conductivity heating, expecting stead by double hole copper tube
Heating film spraying facility	 Electron-beam gun Power supply Controller Mechanical Structure 	 Meets the Length of 11.4m vacuum chamber Multilayer Spray Ceramic and conductivity layer 	R&D
NEG coating tower	 Pumping system Vacuum measurement Power supply Vacuum chambers Discharge Gas Cathode、 controller 	 Meets the Length of 11.4m vacuum chamber 6 working position Background vacuum <5e-7Pa Baking temperature 200°C 	Developing to be more fitted the production line
Measurement and testing	Dimension measurementLeakage testing	 Dimension measurement 11.5m/0.1mm Leakage testing 1e-10 mbar·L/s 	Design and manufacturing
Cleaning	rinsing	deionized water rinsing	Design and manufacturing
Production line auxiliary equipment	Moving bandrobot arm systemcontroller	Meets the Length of 11.4m vacuum chamber	Design and manufacturing

Procedure of NEG coating, spraying

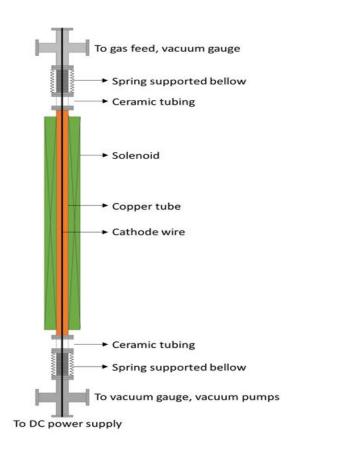
Spraying


- Sandblasting
- Spraying_Isolation_layer
- Spraying_Conductivity-layer
- Spraying_Isolation-layer
- Spraying_Contactor-layer
- Cleaning
- Outside
- Inside

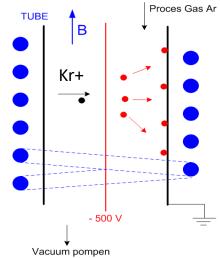
NEG coating

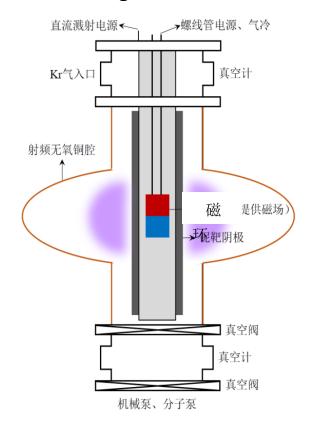
- > vacuum chambers, cathodes assembling by mechanical arms (flanges sealing).
- > Leakage testing.
- Deliver the assembles to vacuum oven/ baking/ NEG coating;
- Disassembly the vacuum chambers

Function	Materials	Thichness/um
Transition-layer	MCrAlY alloy	50~100
Isolation-layer	Al2O3 cermic	~150
Conductivity-layer	NiCr alloy	~100~200
Isolation-layer	Al2O3 cermic	~150
Contactor-layer	Copper	~50



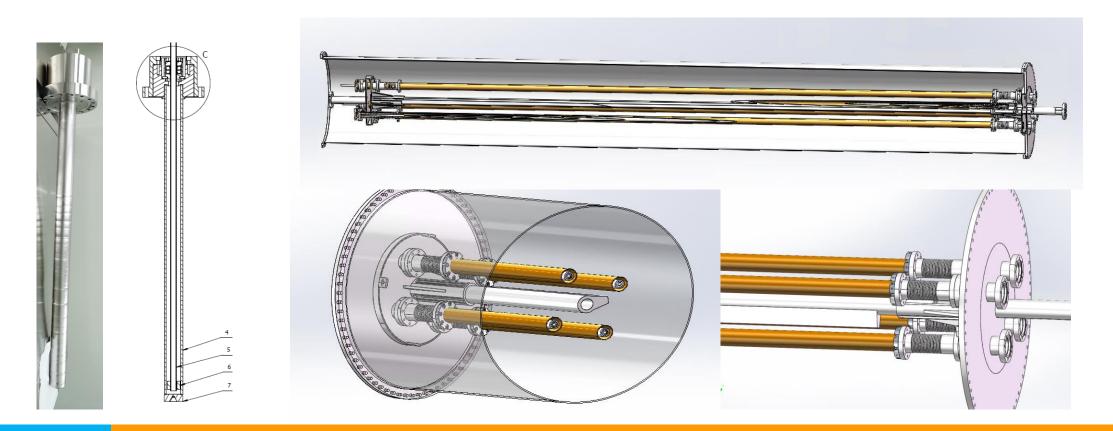
NEG coating mechanism & method

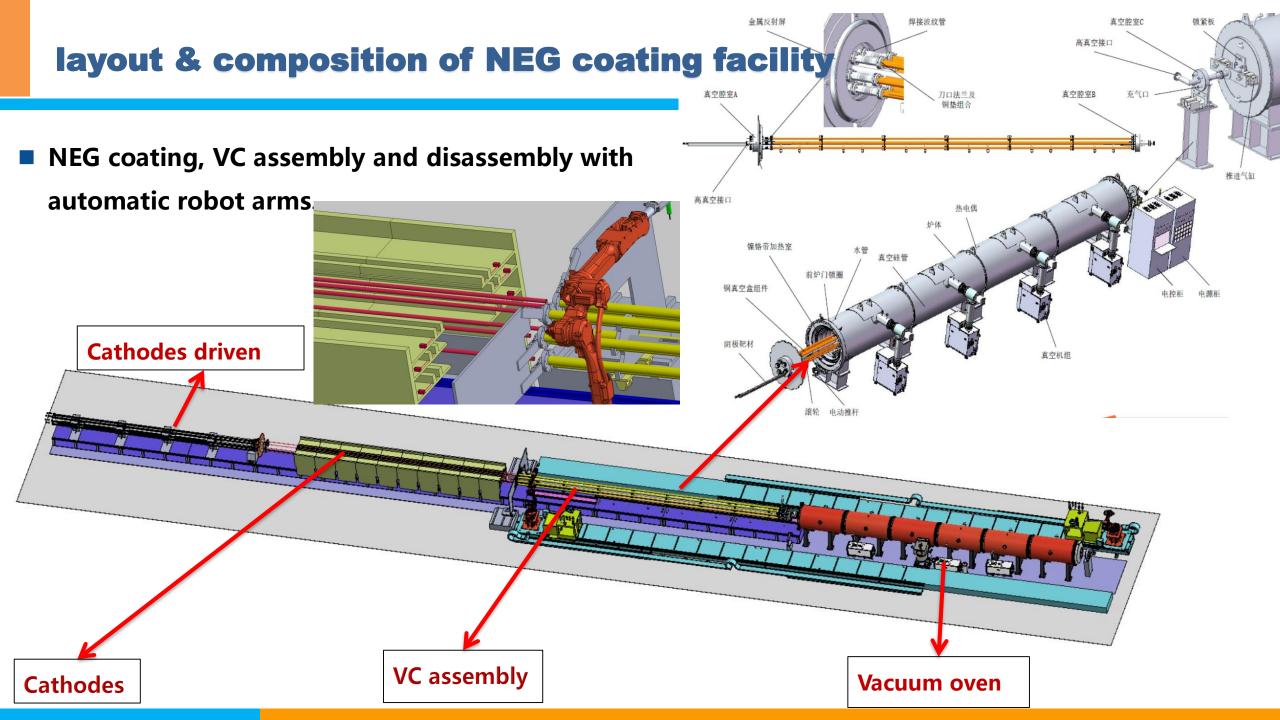

□ HEPS, LHC, MAX IV, SIRIUS, APS_U etc.


Outside magnet (solenoid)

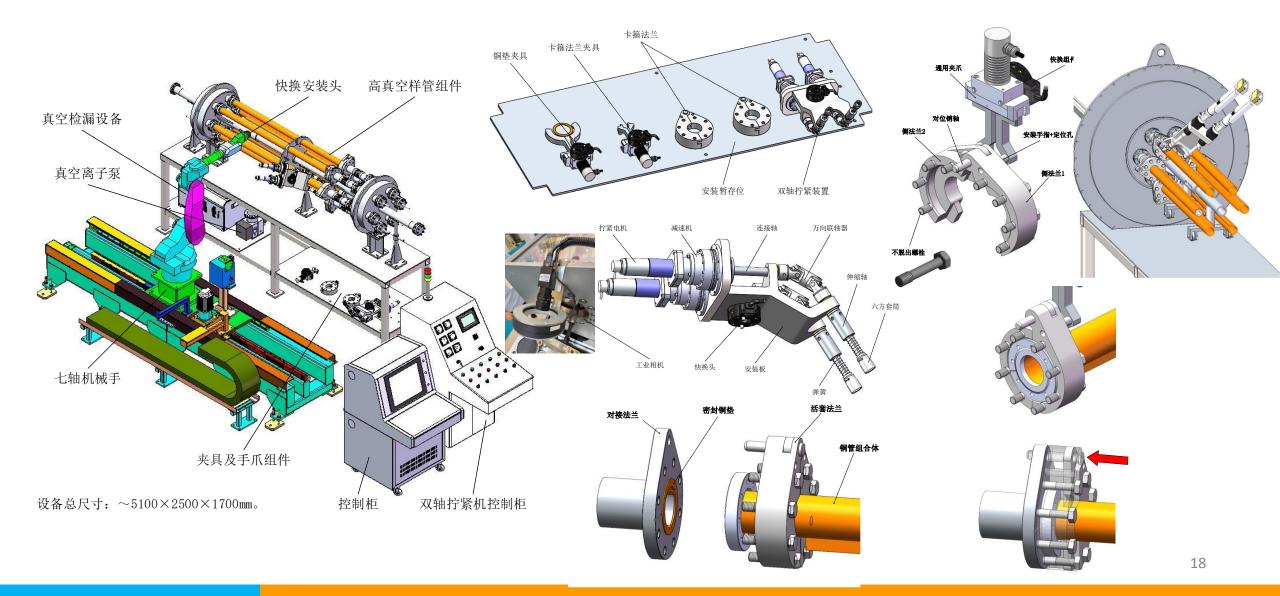
Cathode wire

CSNS, BEPCII vacuum chambers;Nb coating;

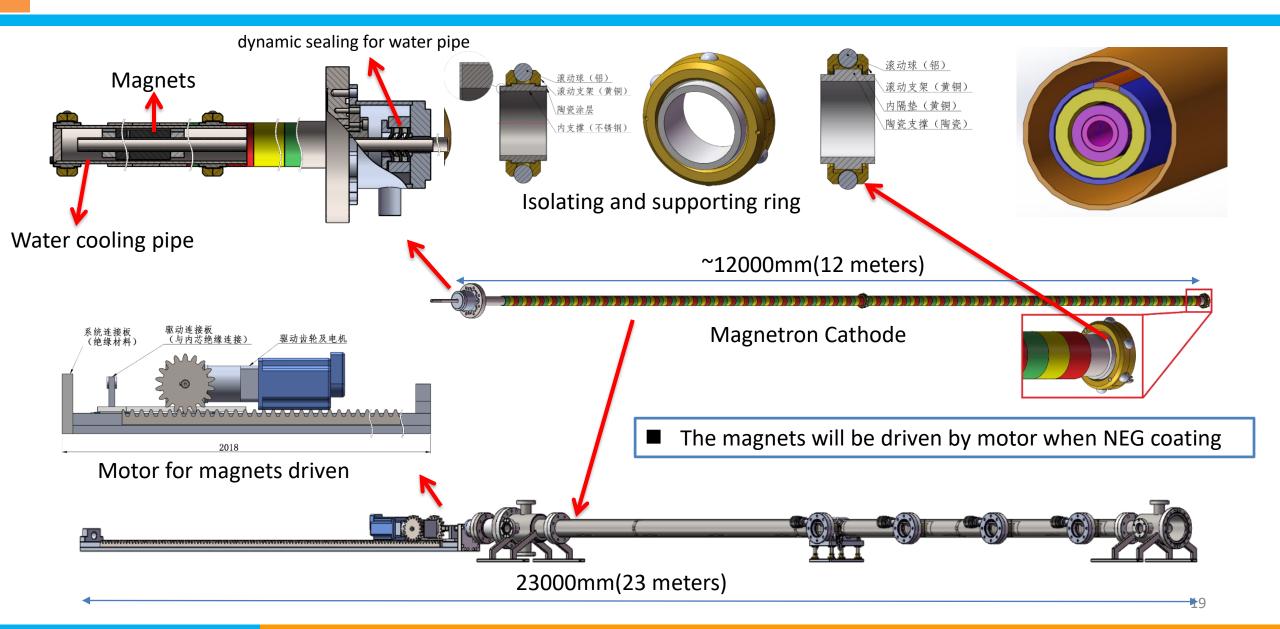



Inside magnet

Magnetron sputtering cathode


Massive production of NEG coating for CEPC——Upgrade plan

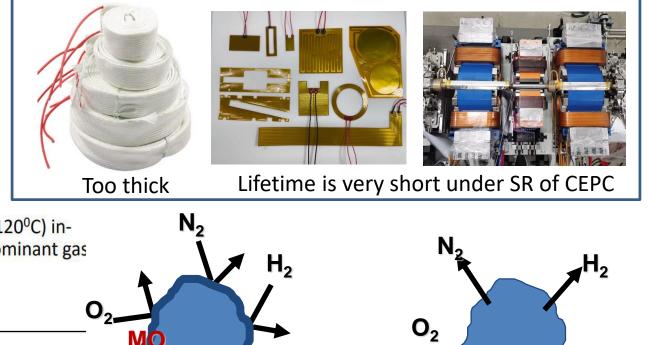
- Due to the diameter of CEPC is D56, we plan to replace the cathode wire with a magnetron sputtering cathode
- Permanent magnet instead of the solenoid which supplies magnetic field for DCMS;
- By combining the low vacuum chamber outside of the vacuum chambers to be coated with NEG, the high vacuum process is simplified;

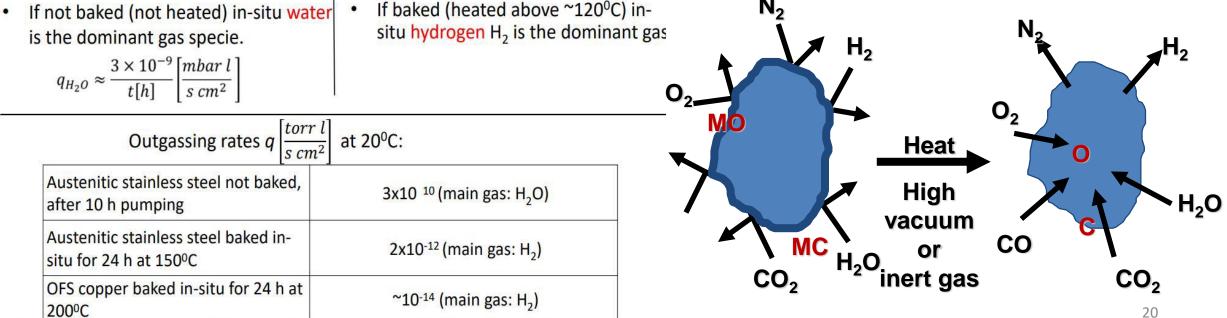


Prototype of vacuum chambers assembly

Prototype of cathode for NEG coating

VC baking & Why spray heating film


The baking is the most crucial procedure in achieving ultra-high vacuum


■ Necessity:

For metals:

 ✓ In order to meet the ultra-high vacuum requirement of achieving a dynamic vacuum level of 3.0E-10 mbar.

✓ NEG coating reactivation

Spraying for heating film

- Multilayer heating film will be coated outside of the vacuum chamber which composited by ceramic and conductivity layer
- The heating temperature could reach 250°C

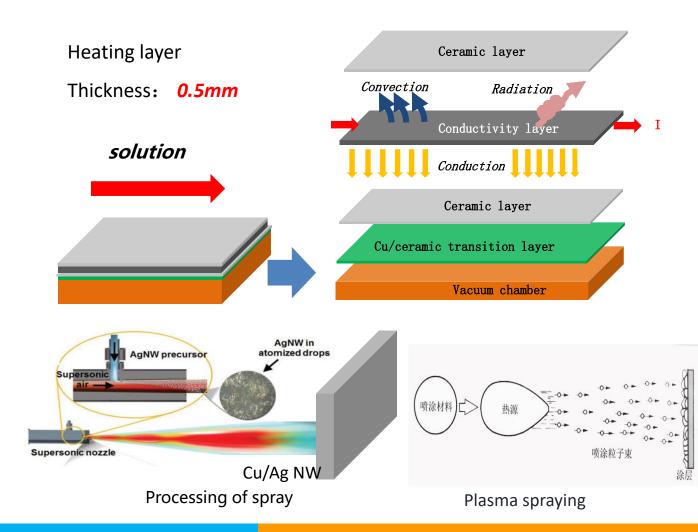
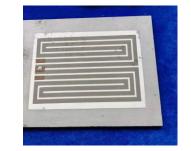
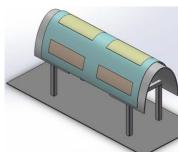




图 2.4 Oerlikon Metco UniCoatPro 大气等离子喷涂设备: (a)控制部分; (b)喷涂部分

Related commercial products

Electric heating circuit

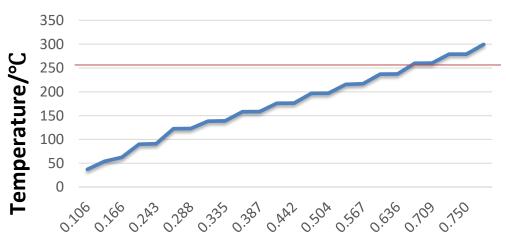
De-icing for airplane

21

Spraying for heating film

Prototype of Spraying heating film and tests

Reheating test more than 12 times

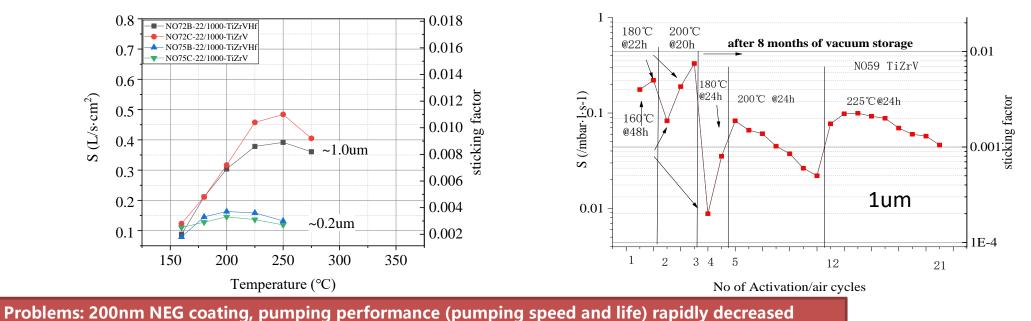

Dimension: L400*D24 Substrate: copper

Function	Materials	Thichness/um
Transition-layer	MCrAlY alloy	50~100
Isolation-layer	Al2O3 cermic	~150
Conductivity-layer	NiCr alloy	~100~200
Isolation-layer	Al2O3 cermic	~150
Contactor-layer	Copper	~50

() 200 100 0 100 0 Reheating cycles

Temperature vs Heating Power

Power density W/cm2

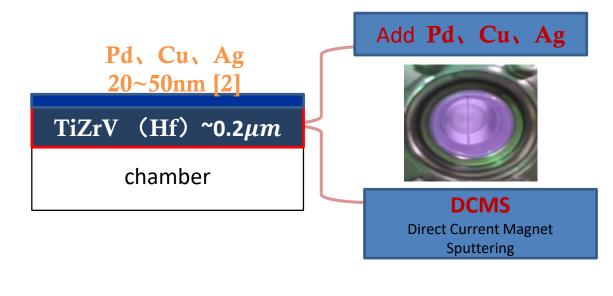

NEG coating optimization in EDR

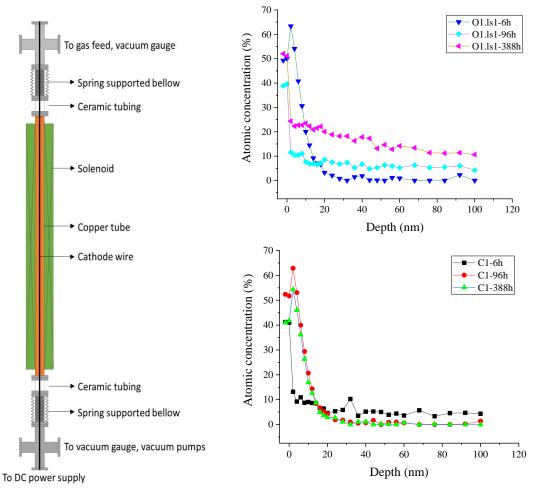
□ Impedence

Round pipe of Copper (2~3mm) with NEG coating (200nm)

Strictly control on the coating thickness for impedance source to restrain the instability! [1]

Reactivation life-times

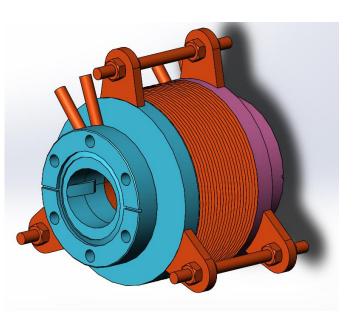


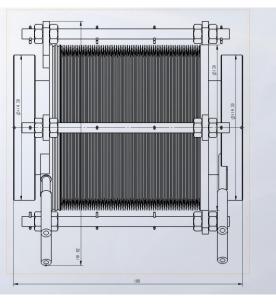

[1] Liu Yu Dong .Modification suggestion of vacuum chamber for the collider ring. 2021/3/25

NEG coating optimization _ Next step

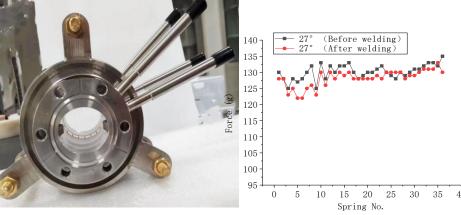
Multilayer NEG coating: improve lifetimes, conductivity.

The application of a thin palladium (Pd) layer to a getter film has been proposed as a means of preventing oxidation of the getter layer so as to address the issue of limited operational lifespans.[1]




[1] C. Benvenuti, P. Chiggiato, F. Cicoira, Y. L'Aminot, V. Ruzinov, Vacuum properties of pallium thin film coatings, Vacuum 73 (2004) 139–144.

[2] JIN X, TANIMOTO Y, UCHIYAMA T, et al. Synchrotron radiation-stimulated desorption from Pd or Pd/TiZrV coated copper tubes [J]. Vacuum, 2021, 192(110445.


Full-scaled size RF shielding bellows development

- RF shielding Bellows for ultra Expansion/contraction: Ultra Expansion/contraction RF bellows to meet the 11.5m long vacuum chambers.
- Mask is designed on the upstream of RF bellows to absorb the SR
- The all RF bellows were produced by local company in China, and massive used in HEPS.

Prototypes in TDR & HEPS ²⁶

- Vacuum chambers with AI, Copper alloy materials have been conducted in BEPC II, HEPS, and also NEG coating have been applicated in HEPS with thickness of 1 um, For CEPC, 0.2 um NEG coating is a curial technology, due to its short time life-cycles.
- Production line of vacuum chambers NEG coating and spraying heating will be R&D in 2 years;
- NEG coating by magnetron sputtering cathode method R&D will be carried out to adapt the production line;
- Prototype of Spraying heating film and tests have been carried out, which shows a good results;
- NEG coating optimization for low impedance film, Spraying for heating film plan to be carried out ;

Acknowledgement

- A significant amount of work has been completed in the CDR and TDR, and I would like to thank all those who have contributed to these efforts.
- Thanks for the HEPS, FCC-ee project;

Thanks for your attention