

Development of the CCT superconducting magnets for the STCF interaction region

<u>Shaoqing Wei¹</u>, Wenbin Ma², Jiaxin Li¹, and Jingyu Tang³ et al. eeFACT-Tsukuba, Mar. 03-07,2025

On the behalf of STCF IRSM SC magnet team: 1. Institute of Plasma Physics, Chinese Academy of Sciences (CAS); 2. High Magnetic Field Laboratory, Chinese Academy of Sciences (CAS); 3. University of Science and Technology of China

- Background
- Design of STCF DQ0 CCT Magnet
- A Novel CCT Design
- Conclusion

- Background
- Design of STCF DQ0 CCT Magnet
- A Novel CCT Design
- Conclusion

Super Tau Charm Facility (STCF)

Quarks

A factory producing massive tau lepton and hadrons, to unravel the mystery of how quarks form matter and the symmetries of fundamental interactions

- $E_{\rm cm}$ = 2-7 GeV, $\mathcal{L} > 0.5 \times 10^{35} \ {\rm cm}^{-2} \ {\rm s}^{-1}$
- Potential for upgrade to increase luminosity and realize polarized beam
- Site: 1 km², Hefei's suburban "Future Big Science City"

Interaction Region SC Quadrupoles

□ The QD0 is the nearest magnet from IP. It needs 50 gradient with all the harmonics $\leq 2 \times 10^{-4}$.

Coil	R _{ref} , (mm)	Gradient (T/m)	Effective length (mm)	High harmonics	Crosstalk (Gauss)
QD0	10	50	400	≤0.2 ‰	30
QF1	15	40	300	≤0.2 ‰	30

Interaction Region DQ0 Magnet

□ In the interaction region, the beam angle is 60 mrad (<3.44°), so the usable radius space of DQ0 quadrupole and corrector magnet is $d \le 6.2$ mm (26.26-20=6.26), and with the gradient G=50 T/m.

- Background
- Design of STCF DQ0 CCT Magnet
- A Novel CCT Design
- Conclusion

CCT Magnet Advantages

□ The inner and outer radius of IR magnet DQ0 is only 20 mm and 26.26 mm. The bending radius at of the CCT coil is relatively larger, so the CCT type is selected.

Structures	CCT coil	Serpentine coil	Cos2θ coil	DCT coil
			QCIP sextupole leak:field cancel magnet QCIP	
advantages	 Good magnetic field quality No accumulation stress Relatively large bending radius at the end coil 	 Compact structure Minimal space occupied 	 High magnetic field utilization Minimal space occupied 	 Good magnetic field quality Low cold mass
disadvantages	 Long coil end Low magnetic field utilization 	 Small bending radius Winding complicate 	 Small bending radius Multi-layer nesting Complex mechanical structure 	 Small bending radius Low magnetic field utilization

CCT Coil

CCT (Canted Cosine Theta) Magnet

- ✓ In 1970, the CCT structure was first proposed by D.I. Meyer and R. Flasck of the University of Michigan in America.
- ✓ Until 2003, the CCT coil was first made by R.B. Meiinke of the Advanced Magnet Laboratory (AML) in America.
- ✓ CCT coil is composed of two layers of canted solenoid coils with opposite skew angles.
- ✓ CCT winding patch

CCT dipole

CCT quadrupole

Design CCT Coil for DQ0

The Design of DQ0 CCT Coil

The Harmonics Analysis

Harmonics Optimization (1)

The cross-talk was optimized, by adding the reverse harmonic component, and change the winding trajectory equation

$$z = \sum_{n_b} \left[K_n \frac{r \sin(n_b \theta)}{n_b \tan \alpha} \right] + \sum_{n_a} \left[P_n \frac{r \cos(n_a \theta)}{n_a \tan \alpha} \right]$$

 b_{4}

-152.69 125.66 -10.24

-1.51

 K_n / P_n

0

0.0362

-0.0231

-0.0136

-0.0007

0.00062

 b_3

0.99

Integral AP1

 b_{5}

-0.80

 a_2

-6.13

-0.22

 a_3

2.44

0.16

□ All the high order harmonics are all less than 1.6

 $\times 10^{-4}$. (Requirements < 2 $\times 10^{-4}$)

Terms	Al	P1	AP2		
	Cross-talk	After optimized	Cross-talk	After optimized	
a ₂	-6.34	-0.22	-6.46	-0.25	
a ₃	2.55	0.16	-2.06	0.35	
a_4	-0.96	-0.99	-0.62	-067	
b ₃	-153.22	0.99	153.19	-1.02	
b ₄	41.27	-1.51	41.27	-1.52	
b ₅	-10.08	-0.80	10.10	-0.77	

unit: 10⁻⁴

Harmonics Optimization (1)

Harmonics Optimization (2)

Harmonics Optimization (2)

\square All the harmonics are all less than 0.35 \times 10⁻⁴. (Requirements < 2 \times 10⁻⁴)

	AP1				AP2			
Order	An (T∙m)	Bn (T∙m)	Unit (An)	Unit (Bn)	An (T∙m)	Bn (T∙m)	Unit (An)	Unit (Bn)
1	0	5.13E-06	0	0.258	0	-5.13E-06	0	-0.258
2	-8.85E-07	0.199	-0.044	10000	8.85E-07	0.199	0.044	10000
3	-4.95E-07	5.46E-06	-0.025	0.274	-4.95E-07	-5.46E-06	-0.025	-0.274
4	-2.25E-06	6.67E-06	-0.113	0.335	2.25E-06	6.67E-06	0.113	0.335
5	-2.20E-06	3.78E-06	-0.110	0.190	-2.20E-06	-3.78E-06	-0.110	-0.190
6	-2.87E-07	5.63E-06	-0.014	0.283	2.87E-07	5.63E-06	0.014	0.283
7	3.89E-07	1.03E-06	0.020	0.052	3.89E-07	-1.03E-06	0.020	-0.052
8	6.83E-07	6.76E-06	0.034	0.340	-6.83E-07	6.76E-06	-0.034	0.340
9	2.19E-07	-1.14E-06	0.011	-0.057	2.19E-07	1.14E-06	0.011	0.057
10	1.33E-07	5.11E-07	0.007	0.026	-1.33E-07	5.11E-07	-0.007	0.026

Error Analysis

50um in z

0.1

-

שידב: הי

Machining error of CCT former in x, y and z directions 0.1 Fixed AP1, AP2 has 50 microns machining error in x, y and z directions: (1) Measure harmonics in AP2 Error A3 Error B1 Error A1 Error A2 Error B3 Error B4 Error A4 misalignment AP1 AP2 (units) (units) (units) (units) (units) (units) (units) fixed error 50um in x 2.6 0.6 0.2 50um in y 2.5 0.2 1.7 0.6

\square The maximum harmonics (A1 and B1) is increased by 2 unit (1 \times 10⁻⁴).

17

Error Analysis

0.1 □ Machining error of CCT former in x, y and z directions (2) Measure harmonics in AP1 Error B1 Error A2 Error B3 Error A1 Error A3 Error B4 Error A4 misalignment (units) (units) (units) (units) (units) (units) (units) 50um in x 47 0.2 0.6 AP1 AP2 50um in y 47 1.6 0.7 0.1 fixed error 50um in z

\square The maximum harmonics (A1 and B1) is increased by 47 unit (1 \times 10⁻⁴).

Therefore, the machining error (0.05 mm) in x and y direction can affect the harmonies a lot.

Copper coil winding

CCT former

Nesting outer former

Outer coil

CCT Test Coil

Copper coil winding

□ Next, we will develop the superconducting coil test coil.

Contents

- Background
- Design of STCF DQ0 CCT Magnet
- A Novel CCT Design
- Conclusion

A Novel CCT Coil : Slot-less CCT Coil

□ To make the CCT coil structure more compact, and to increase the electromagnetic efficiency, a novel design of CCT with slot-less coil was approached.

A Novel CCT Coil : Slot-less CCT Coil

□ The advantages of the CCT with slot-less coil

- Do not need inner and outer formers, (using rib arrays instead of formers). so simplified skeleton processing.
- The coil can be densely packed winded on the side.
- The electromagnetic efficiency is improved.
- The radial and axial coil length can be decreased.
- Smaller size and lighter weight.

Comparison of two Structures

□ **Magnetic analysis** comparison of the slotted CCT and Slot-less CCT

- Case 1 : The magnetic field of the Slot-less CCT increased by 19.5 %.
- Case 2 : The operating current of the Slot-less CCT is reduced by 15.3 %.

blue line: Slot-less CCT

Comparison of two structures

□ Stress analysis comparison of the slotted CCT and Slot-less CCT

Comparison of two structures

□ Compared to the slotted CCT, the slot-less CCT has higher field, smaller size, lower current.

lt o ree	Ca	se l	Case II		
item	Slotted	Slot-less	Slotted	Slot-less	
1	330	330	868	735	
Central field (T)	0.692	0.827	1.828	1.828	
Peak field (T)	1.044	1.210	2.657	2.647	
Inductance (mH)	1.8	1.9	2.6	1.9	
Maximum Coils stress (MPa)	15.098	18.712	32.414	34.856	
Maximum Mandrels stress (MPa)	0.830	5.162	9.739	14.342	

IEEE Trans. Appl. Superconduct., vol. 35, 2025, DOI:10.1109/TASC.2025.3531382

Fabrication and Cold Test

Unpublished

We make a superconducting Slot-less CCT dipole test coil and test it at 4.2K Liquid Helium temperature.

Dry winding

Wet winding

Cold test

Fabrication and Cold Test

Unpublished

□ We get good test results

- At self field, the current reached 503A, Central field is 1.53T.
- At 3T background field, the current reached 488 A, the load line reached 83%.
- At 5T background field, the current reached 424 A, the load line reached 94%.

- □ The concept design of the CCT quadrupole coil of STCF interaction region is approached in this study.
- □ All the harmonics in the design CCT coils are less than 0.5 \times 10⁻⁴, which satisfied the requirement (< 2 \times 10⁻⁴).
- □ There will be many challenge during the development of the IR CCT coil in STCF.
- □ A novel design of CCT with slot-less coil was explored. It can be a reference for the STCF CCT magnet.

Thanks for your attention!

Backup Sliders

Background

שידביבי

□ Super Tau Charm Facility (STCF)

- A third-generation circular electron-positron collider STCF with the $E_{cm} = 2 \sim 7 \text{ GeV}$ and
 - $\mathcal{L} > 0.5 \times 10^{35}$ cm⁻² s⁻¹ is being developed in China.

 The QD0 is the nearest magnet from IP. It needs 50 gradient with all the harmonics ≤ 2×10⁻⁴.

Coil	R _{ref} , (mm)	Gradient (T/m)	Effective length (mm)	High harmonics	Crosstalk (Gauss)
QD0	10	50	400	≤0.2 ‰	30
QF1	15	40	300	≤0.2 ‰	30

Harmonics Optimization (1)

D By adding reverse harmonic components,

$$z = \sum_{n_b} \left[K_n \frac{r \sin(n_b \theta)}{n_b \tan \alpha} \right] + \sum_{n_a} \left[P_n \frac{r \cos(n_a \theta)}{n_a \tan \alpha} \right]$$

High order harmonics are all less than 1.6×10^{-4} (Requirements < 2 × 10⁻⁴) unit: 10⁻⁴

	Al	P1	AP2		
Terms	Cross-talk	After optimized	Cross-talk	After optimized	
a ₂	-6.34	-0.22	-6.46	-0.25	
a ₃	2.55	0.16	-2.06	0.35	
a ₄	-0.96	-0.99	-0.62	-067	
b ₃	-153.22	0.99	153.19	-1.02	
b ₄	41.27	-1.51	41.27	-1.52	
b	-10.08	-0.80	10.10	-0.77	

Harmonics Optimization (2)

