March 3 - 7, 2025

Tsukuba International Congress Center (EPOCHAL), Tsukuba, Japan

Optics Tuning For the Electron Positron Future Circular Collider (FCC-ee)

187 Stars-

Elaf Musa, Ilya Agapov (Deutsches Elektronen-Synchrotron DESY) Acknowledgment: K. Oide, F. Zimmermann, R. Tomas, T.Charles, S. Liuzzo and the entire FCC-ee optics tuning group. 3^{ed} March 2025

Table of contents

- Optics design for FCC-ee (nominal and ballistic lattices)
- Optics tuning challenges of FCC-ee
- Tuning algorithms and developed correction procedure
- Highlights from FCC-ee tuning results

Baseline optics for FCC-ee

• The optics of the arc region of the lattice rely on FODO cell structure.

Optics parameters at Z energy

Lattice Parameter	Value
Beam Energy (GeV)	45.6
Horizontal tune Q _x	218.16
Vertical tune Q _y	222.20
Horizontal emittance (nm)	0.71
Vertical emittance (pm)	1.90
$\beta *$ at IP x/y (mm)	110/0.7
Luminosity / IP (× 10^{34} cm ² s)	141

Optics parameters at Z energy

Ballistic optics for FCC-ee

Cristobal Garcia FCC-ee optics tuning WG meeting, Sep. 13

 The ballistic commissioning optics involves turning off all IR sextupoles, and quadrupoles 200 m around the IP (used in the first commissioning phases).

Beam dynamics challenges of FCC-ee

• The target collider performance is defined by the luminosity:

$$\mathcal{L} = \frac{1}{4\pi} \frac{f_{\text{rev}} N_1 N_2}{\sigma_x \sigma_y} \frac{1}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \frac{\theta}{2}\right)^2}}$$

- Increasing the luminosity requires:
 - High beam current (will excite multi-particle effects).
 - A very small beta function β at the IPs which requires strong FF magnets, which in turn need strong sextupoles for local chromaticity correction in the Interaction Region (IR) (very sensitive to even small imperfections).
- Beam-Beam effect.

Optics tuning challenges

- Magnets field imperfections and misalignments have several impacts on the beam dynamics (Orbit distortion, coupling, beta-beating, tune shift .. etc.).
- The beam emittances, the Dynamic Aperture (DA), the beam life time and the overall machine performance are strongly dominated by these imperfections.

Impact of 10 μ m alignments errors of arc magnets on optics parameters

Optics sensitivity to magnet alignment errors Arc region

Correction procedure

Correction procedure

• For the ballistic optics with nominal errors Dispersion Free Steering (DFS) was found to be essential to proceed to BBA and optics correction.

rms	DFS	W/O DFS
Ver. Orbit (µm)	255	222
$\Delta \eta_x$ (mm)	70	446
Δ η _y (mm)	39	416
ε _y (pm)	4	659

- DA after beam threading Including initial BPM-to-Quad alignment of 100 $\mu\text{m}.$ Sextupoles Off

Correction algorithms

The aim of orbit and optics correction algorithms is to minimize the impact of lattice errors by adjusting magnets (correctors) strengths.

- 1. Orbit correction involves generating Orbit Response Matrix (ORM)
 - For the i^{th} BPM and the j^{th} corrector the ORM element is:

$$M_{i,j} = \frac{\sqrt{\beta_i(s)\beta_j(s_0)}}{2\sin(\pi Q)} \cos\left(\pi Q - \psi_i(s) + \psi_j(s_0)\right) + \frac{\eta_i(s)\eta_j(s_0)}{\alpha_c L_o}, \qquad \Delta \theta = -M^{-1}\Delta x.$$

2. Linear Optics from Closed Orbit (LOCO) uses the ORM for optics correction

$$\chi^{2} = \sum_{i,j} \frac{\left(M_{\text{model },i,j} - \hat{M}_{i,j}\right)^{2}}{\sigma_{i}^{2}}, \sigma_{i} \text{ is the BPMs noise}$$

- Weighted least square problem that can be solved by minimization algorithms e.g, Gauss-Newton (GN) or Levenberg-Marquardt (LM).
- Parameters like the relative quadrupole strengths are adjusted in iterations.

Correction algorithms

In the Turn by Turn (TbT) measurements the beam is excited and beam position data is recorded over one or multiple turns to determine optics parameters.

3. Phase advance + η_x correction

$$\Delta \varphi(s_0, s) = \int_{s_0}^{s} \frac{\mathrm{d}s'}{\beta_{(\text{theo}\,)}} \left(\frac{1}{1 + \frac{\Delta \beta}{\beta}} - 1 \right). \qquad \begin{pmatrix} \alpha_1 \Delta \varphi_x \\ \alpha_1 \Delta \varphi_y \\ \alpha_2 \Delta \eta_x \end{pmatrix}_{\text{measured}} = -C_{\text{model}} \,\delta K$$

4. Coupling RDTs + η_v correction

$$f_{1001}(s) = -\frac{1}{4\left(1 - e^{2\pi i \left(Q_x \mp Q_y\right)}\right)} \sum k_s(s) \sqrt{\beta_x(s)\beta_y(s)} e^{i\left(\Delta \psi_x^s + \Delta \psi_y^s\right)}.$$

 $\begin{pmatrix} \alpha_1 f_{1001} \\ \alpha_1 f_{1010} \\ \alpha_2 r \end{pmatrix} = -N_{\text{model}} \,\delta K_s.$

Optics tuning tools

- Using the Python interface of Accelerator Toolbox (PyAT) we have developed an optics tuning code/tools. <u>https://github.com/elafmusa/Optics-corrections-with-PyAT</u>
 - Tuning simulations for FCC-ee at Z energy:
 - A correction procedure was developed.
 - Proper tuning sequence including the number of iterations was defined.
 - Proper parameters and weight values for each step were defined.
- Some functions were imported from the commissioning simulations tools on AT by S. Luizzo - ESRF.
- We started to merge the code with the Python version of the Simulated Commissioning toolkit for Synchrotrons (PySC) that offers a wider and more expanded implementations (Girders misalignment, BBA simulation, BPMs reading function, tracking modes .. etc.)

Benchmark of commissioning simulations with errors and corrections: AT vs. MAD-X

- The benchmarking study were performed by applying the same errors and following the same correction steps.
- The study demonstrated good agreement between the two codes.

S. Luizzo, T. Charles, R. Tomas, I. Agapov and E. Musa, Benchmark of commissioning simulations with errors and corrections: AT vs MADX vs MADX PTC, FCC-ee optics tuning WG meeting.

Implemented Python-based numerical code for LOCO

- The validity of the implemented code is demonstrated, where random relative field errors, were applied to all quadrupoles.
- The figure shows the reduction in vertical beta beating over each LOCO iteration until convergence.

FCC-ee

E. Musa, I. Agapov, T. Charles., "Orbit-response based optics corrections for FCC-ee", presented at IPAC'23, Venice, Italy, May 2023, paper WEPL017.

E. Musa, PETRAIV beam physics meeting 26 Jan 2024.

Tuning simulations (using LOCO for optics correction)

• Random horizontal and vertical displacement errors with standard deviation of 100 μ m in the arc components of the baseline

50 Seeds (Mean rms values)	hor. orbit (µm)	ver. orbit (µm)	Δβ <mark>x</mark> /β _x %	∆β _y /β _y %	Δ η _x (mm)	ղ _y (mm)	٤ _h (nm)	٤ _v (pm)
With err (sext.off)	5896.03	7735.96	7.8 × 10 ^{−7}	2.1 ×10 ⁻⁴	10513.98	80846.25	-	-
After sext ramping	8.54	8.34	5.64	10.46	43.94	45.45	0.71	9.18
Beta beat cor.	8.55	8.35	2.22	3.43	40.50	45.43	0.71	9.01
Coupling cor.	8.55	8.36	2.12	3.48	1.78	3.09	0.70	6.45
Final cor. results	8.56	8.35	1.93	3.23	4.95	2.93	0.70	5.99

Alternative optics correction methods: Phase advance/ η_{x} and RDTs/ η_{v} correction

σ =100 μ m	hor. orbit (µm)	ver. orbit (µm)	∆β _x /β _x %	∆β _y /β _y %	Δ η _x (mm)	ղ _y (mm)	ε _h (nm)	ε _ν (pm)
With err	6224.8	7276.7	1 ×10 ⁻⁶	1 ×10 ⁻⁴	11985	73458	-	-
After sext ramping	8.55	8.35	5.98	9.91	45.23	45.96	0.71	9.61
RDTs & ηy correction	8.58	8.42	6.01	9.94	45.09	4.49	0.71	2.32
Phase cor.	8.55	8.35	0.35	0.79	2.94	4.36	0.70	0.88
Final cor. results	8.55	8.35	0.35	0.89	2.94	4.37	0.70	0.73

LOCO Vs. Phase advance/ η_x and RDTs/ η_y correction

• The large median DA for 50 seeds after correction demonstrate a better performance for the TbT compared to LOCO.

 σ_x = 8.84 ×10⁻⁶m, σ_y = 3.12×10⁻⁶m, Rad off.

Phase advance between sextupoles

- The cancellation scheme of the nonlinear effects by the sextupoles • relies on the phase advances between the sextupoles.
- Distorting the phase advances increases the nonlinear effects and • reduce the DA.

10

8

4

2

Frequency 6

TbT Mean RMS hor. $\Delta \phi$ =3.6 × 10⁻⁴

rms |muy - muy0| **LOCO** Mean RMS ver. $\Delta \phi = 1.67 \times 10^{-3}$ **TbT** Mean RMS ver. $\Delta \phi$ = 9.9 × 10⁻⁴

0.002

0.001

TbT

0.004

Ver. Phase advance errors

0.003

LOCO

Girders configurations & BPMS locations

• Results of correction showed a preference to have the BPMS attached to the quadrupoles.

Applied magnets misalignments and strength errors

Elements	Hor. & Ver. Displacement	Rotations			
	(µ m)	(prad)		Strength errors	
Arc quads and sext.	50	50	Elements	$\frac{\Delta K}{K}$	
All dipoles	1000	1000	Arc quads	2× 10 ⁻⁴	
Girders	150	150	and sext.	210	
BPMs- quads.	10	10	All dipoles	2× 10 ⁻⁴	

• These values correspond to one sigma Gaussian distribution truncated at 2.5 sigma.

Tuning results (nominal lattice)

Parameter	Prior optics cor.	Final cor.
hor. orbi(µm)	120.25	120.46
ver. orbit(µm)	217.53	217.56
Δβ _x/β_x%	7.41	0.29
$\Delta \beta_y / \beta_y \%$	15.79	2.81
∆ ղ _x (mm)	57.79	0.28
∆ ղ _y (mm)	62.24	2.80
ε _y (pm)	26.01	0.57
ε _x (pm)	0.72	0.71
hor. Δφ [2 π]	1.13 \times 10 ⁻²	2.91 ×10 ⁻⁴
ver. Δφ [2 π]	1.93 × 10 ⁻²	2.29 × 10 ⁻³

Tuning results (nominal lattice)

• Parameters after correction (at IP)

Δβ _x /β _x	Δβ <mark>γ</mark> /βγ	Δ η _x	∆ դ _y	Re	lm	Re	lm
%	%	(mm)	(mm)	F1001	F1001	F1010	F1010
0.34	3.08	0.003	0.001	6.49 ×10 ⁻⁶	1.72 ×10 ⁻⁵	1.59 \times 10 ⁻⁵	2.23 × 10^{-5}

Tuning results (Ballistic optics)

• The simulation included IR alignment errors of 50 μ m in addition to the arc errors.

Parameter	Prior optics cor.	Final cor.
hor.orbit (µm)	120.45	120.44
ver.orbit (µm)	212.29	212.25
Δβ <mark>x</mark> /βx%	8.39	0.85
Δβ <mark>y</mark> /βy%	18.97	0.50
∆ η _x (mm)	73.14	0.45
∆ դ _y (mm)	65.73	0.39
ε _y (pm)	30.37	0.26
ε _x (pm)	0.89	0.85
hor. Δφ [2 π]	0.012	$8 imes 10^{-4}$
ver. Δφ [2 π]	0.023	$6 imes 10^{-4}$

Conclusion

- The developed correction procedure managed to achieve a median vertical and horizontal emittance within the target (0.57pm and 0.71 pm respectively), and optics parameters $\frac{\Delta\beta_y}{\beta_y}$ of 2.81% and $\Delta \eta_y$ of 0.28 mm with normal errors.
- Tuning simulations to the ballistic optics allows to include 50 μm alignment errors in the IR.
- Looking ahead, we plan to incorporate IR magnet errors for the nominal lattice, and conducting tuning simulations for the other energy modes.

Selected References

[1] Future Circular Collider Conceptual Design Report CDR, 2019, FCC CDR on CERN Website.

[2] K. Oide, June 1, 2023@168th FCC-ee Optics Design Meeting&39th FCCISWP2.

[3] J. Safranek, "Experimental determination of storage ring optics using orbit response measurements," Nucl. Inst. And Meth. A388, pp. 27-36, 1997.

[4] T. Charles, et al., "Alignment and Stability Challenges for FCC-ee," EPJ Techniques and Instrumentation, vol. 10, no. 8, 2023.

[5] M. G. Minty and F. Zimmermann, Measurement and Control of Charged Particle Beams (Springer, 2011), Springer Link.

[6] R. Tom´as, M. Aiba, A. Franchi, et.al, Review of Linear Optics Measurement and Correction for Charged Particle Accelerators), 10.1103/PhysRevAccelBeams.20.054801.
[7] C. Garcia, et al., "Ballistic optics for FCC-ee," FCC-ee optics tuning WG meeting, Sept. 13, 2024.

[8] atcollab/at: Accelerator Toolbox

Thank you for your attention

ご清聴ありがとうございました

Improving the correction procedure

- Adjusting the number of singular values used for orbit and optics corrections.
- Sextupoles ramping in steps of 10%, with further orbit and tune correction performed at every stage. Once at 100% of the design value, the sextupole strengths are varied to perform chromaticity correction.
 - This improvement managed to increase the manageable alignment tolerances in the arc magnets to 30 μ m standard deviation.
- Additional orbit correction steps along the scheme.
 - Interleaved with LOCO to control emittance growth.
 - Example: For 100 μ m alignment errors in the arc, the mean vertical emittance was reduced from:
 - Baseline: 537.30 pm to 5.99 pm
 - LCCO: 444 pm to 2.52 pm

FCC-ee elements

- Dipole lengths: 100 m 1.7 m
- Quadrupole lengths: 0.7 m 3.5 m

Elements	Z	$t\bar{t}$	Z
	Baseline	Baseline	LCC
IR quads.	436	488	532
IR sext.	64	96	136
Arc quads.	1420	3324	2168
Arc sext.	568	2368	1728
Dipoles	3056	3056	2412

Non-interleaved sextupole scheme

Phase advance of π in both planes of between the sextupoles to maximize the geometric aberration cancellation.

FCC-ee lattices

Z & $t\bar{t}$ lattices

Lattice sensitivity to errors: comparison between: z and $t\bar{t}$ lattices

Interaction region

E. Musa, "Tuning studies with pyAT", FCC-ee optics tuning WG meeting, 23th Jul 2024. https://indico.cern.ch/event/1439019/

Lattice sensitivity to errors: comparison between: Z and $t\bar{t}$ lattices Arc region

E. Musa, "Tuning studies with pyAT", FCC-ee optics tuning WG meeting, 23th Jul 2024. https://indico.cern.ch/event/1439019/ tŦ

Z

Baseline & LCC

Two proposed optics design for FCC-ee

- In the baseline lattice, the IR has a Local Chromaticity Correction System (LCCS) only in the vertical plane at each side of the IP.
- The LCCO final focusing system based in correcting the chromaticity in both planes.

Tuning simulations with Phase advance/ η_x and RDTs/ η_y correction

- Correction of random horizontal and vertical displacement errors with standard deviation of 100 µm in the arc quadrupoles and sextupoles. (using Phase advance for optics correction).
 - Baseline

hor. orbit (µm)	ver. orbit (µm)	$\Delta eta_x / eta_x$ %	$\Delta eta_{ m y} / eta_{ m y}$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)	$\epsilon_{\rm h}({\rm nm})$	$\varepsilon_v(pm)$
8.55	8.35	0.35	0.89	2.94	4.37	0.70	0.73

• LCCO

hor. orbit (µm)	ver. orbit (µm)	$\Delta eta_x / eta_x$ %	$\Delta eta_y / eta_y$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)	ε _h (nm)	ε _v (pm)
6.50	5.62	0.09	0.38	0.37	0.89	0.70	0.43

Deam-Deam studies in metrack

Betatron Tunes and Vertical Emittances at Z

 $\varepsilon_x \approx 0.72$ nm, ε_v should be ~1.4 pm with beam-beam, so it should be several times smaller without beam-beam.

		Seed_1	Seed_2	Seed_3	Seed_4	Seed_5
Radiation OFF	MADX	0.15890 / 0.20077	0.15817 / 0.20148	0.15871 / 0.20030	0.15879 / 0.20151	0.15933 / 0.20075
	Lifetrac	0.15881 / 0.20077	0.15808 / 0.20148	0.15862 / 0.20031	0.15869 / 0.20151	0.15924 / 0.20075
Radiation & tapering	MADX	0.15887 / 0.20049 / 0.62	0.15801/0.20047/0.90	0.15855/0.19928/3.41	0.15864/0.20051/1.68	0.15918 / 0.19975 / 1.04
& tapering	Lifetrac	0.15874/0.20073/0.77/ 1.52	0.15800/0.20144/0.96/ 33.4	0.15236/0.21151/3.92/10.8	0.15862/0.20147/2.00/6.29	0.15916 / 0.20070 / 1.44 / 8.70
Radiation	MADX	0.15255/0.21188/0.35	0.15183 / 0.21252 / 0.78	0.15236/0.21151/1.64	0.15246 / 0.21247 / 0.86	0.15296 / 0.21181 / 0.72
	Lifetrac	0.15256/0.21276/0.41/8.51	0.15184/0.21339/0.84/35.9	0.15237/0.21240/2.07/ 13.9	0.15247/0.21333/1.08/12.3	0.15297 / 0.21267 / 1.16 / 14.2

 v_x / v_y / ε_{y0} / ε_y [pm]

Dmitry Shatilov, Private communication, Oct. 2023

Correction procedure

Implemented Python-based numerical code for LOCO

- Model orbit response matrix.
- Jacobian:

Each column of the Jacobian matrix is the derivative of the response matrix over one fitting parameter.
Parallel processing in DESY maxwell cluster.
Analytical option: A.Franchi, S. Liuzzo, et.al, <u>arXiv:1711.06589</u>

- Other inputs (Initial guess, Included fit parameters, etc.)
- Measured orbit response matrix.
- Minimization

(Gauss-Newton or Levenberg-Marquardt)

- Applying the fitting results to the lattice.
- Convergence of optics parameters.

Parameters update formula $\delta h_{GN} = \left[J^{\top} W J \right]^{-1} J^{\top} W \left(M - M_{model} \right).$

LOCO iterations

Input

Improving the correction procedure

• Adjusting the number of singular values

Sextupoles nonlinear effect on the ORMs

E. Musa, "Orbit-response based optics correction studies for FCC-ee," presented at the FCCee Tuning Workshop, 27 June 2023, (CERN), Geneva, Switzerland

Phase advance matching

$$\Delta \phi(s_0, s) = \int_{s_0}^{s} \frac{ds'}{\beta_{(\text{theo})}} \left(\frac{1}{1 + \frac{\Delta \beta}{\beta}} - 1 \right).$$

04 -

R. Tom´as, et. Al, "PROCEDURES AND ACCURACY ESTIMATES FOR BETA-BEAT CORRECTION IN THE LHC", WEPCH047

Tuning simulation studies for the baseline

Following LOCO with coupling RDTs correction

	Rms hor. orbit (µm)	rms ver. orbit (µm)	$\Delta \beta_x / \beta_x$ %	$\Delta eta_y / eta_y$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)	ε _h (nm)	ε _v (pm)
With err	5896.03	7735.96	7.8e-7	2.1e-4	10513.98	80846.25	-	-
After sext ramping	8.54	8.34	5.64	10.46	43.94	45.45	0.71	9.18
Beta beat cor.	8.55	8.35	2.22	3.43	40.50	45.43	0.71	9.01
Coupling cor.	8.55	8.36	2.12	3.48	1.78	3.09	0.70	6.45
Beta beat cor.	8.56	8.35	1.93	3.23	4.95	2.93	0.70	5.99
RDTs cor.	8.56	8.35	1.77	2.95	4.97	0.37	0.70	0.66

• Including of BPMs alignment

• A transverse "Offset" field was introduced for each BPM and set to equal the assigned offset errors of the corresponding quadrupole.

Elements	Hor. & Ver. Displaceme nt & tilt
Arc quads and sext	100 µm
All dipoles	150 μm
BPMs	Same as quads.

E. Musa, "Tuning studies with pyAT", FCC-ee optics tuning WG meeting, 23th Jul 2024. https://indico.cern.ch/event/143 9019/

Tuning simulations for the baseline lattice

- Results include girders tilt and strength errors of value 0.02% to arc quadrupole, sextupoles and to all dipoles.
- 10 µm BPM-to-quadrupole after BBA.

Before linear optics correction

rms hor. orbit (μm)	rms ver. orbit (μm)	rms Δβx/βx %	rms Δβy/βy %	rms Δηx (mm)	rms Δηy (mm)	ε _h (nm)	ε _v (pm)
120.25	217 53	7 41	15 79	57 79	62 24	0.72	26.01

Interaction Region

Tuning studies with field errors

enable_6d() Setting the cavity parameters Tapering

Errors Applied

Туре	Field Errors
Arc quadrupole Arc sextupoles	$\begin{array}{l} \Delta k/k = 2\times 10^{-4} \\ \Delta k/k = 2\times 10^{-4} \end{array}$
IR quadrupole IR sextupoles	$\begin{array}{c} \Delta k/k = 1 \times 10^{-4} \\ \Delta k/k = 2 \times 10^{-4} \end{array}$

lattice optics with errors (1 seed):

 $\Delta\beta_x/\beta_x$: 9.2141% $\Delta\beta_y/\beta_y$: 38.2045% $\Delta\eta_x$: 12.3859 $\Delta\eta_y$: 2.6723e-12 mm Tune: [218.162, 222.209, 0.0288] Chromaticity: [0.1294, 5.2607, -0.0246]

E. Musa, "pyAT for FCC-ee optics corrections," presented at the AT Workshop, Accelerator Toolbox Workshop, 2-3 October 2023, ESRF, Grenoble, France.

Tuning studies with field errors

LOCO 1st iteration:

 $\Delta\beta_x/\beta_x$: 1.4666% $\Delta\beta_y/\beta_y$: 7.4342% $\Delta\eta_x$: 3.4701 $\Delta\eta_y$: 8.0814e-12 mm Tune: [218.1584, 222.1786] Chromaticity: [0.03895, 5.0126]

LOCO 2^{ed} iteration:

 $\Delta\beta_x/\beta_x$: 0.9190% $\Delta\beta_y/\beta_y$: 0.8944% $\Delta\eta_x$: 2.8573 $\Delta\eta_y$: 3.4580e-12 mm Tune: [218.1569, 222.2036] Chromaticity: [-0.0257, 5.2638]

LOCO 3^{ed} iteration:

E. Musa, "pyAT for FCC-ee optics corrections," presented at the

AT Workshop, Accelerator Toolbox Workshop, 2-3 October

2023. ESRF. Grenoble. France.

 $\Delta\beta_x/\beta_x$: 0.6136% $\Delta\beta_y/\beta_y$: 0.2899% $\Delta\eta_x$: 3.1049 $\Delta\eta_y$: 3.2505e-12 mm Tune: [218.1574, 222.2000] Chromaticity: [0.0268, 5.2584]

Tuning studies with field errors

E. Musa, "pyAT for FCC-ee optics corrections," presented at the AT Workshop, Accelerator Toolbox Workshop, 2-3 October 2023, ESRF, Grenoble, France.

Correction results including IR magnets alignment errors

- $100~\mu m$ in the arc magnets and $5~\mu m$ in the IR
- Initial correction results

	hor. orbit (µm)	ver. orbit (µm)	$\Delta eta_x / eta_x$ %	$\Delta eta_{y} / eta_{y}$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)
mean	15.60	13.87	0.59	3.47	4.47	7.80
std	49.51	38.81	0.46	2.78	8.99	5.22

• Results after Improvement

	hor. orbit (µm)	ver. orbit (µm)	$\Delta \beta_x / \beta_x$ %	$\Delta eta_{ m y} / eta_{ m y}$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)
mean	8.510	8.310	0.056	0.086	0.125	0.242
std	0.590	0.520	0.089	0.088	0.050	0.247

Adding errors to IR (Ballistic optics)

Elements	Hor. & Ver. displacement	Tilt 0
Arc quads and sext	50 µm	50 µrad
IR quads and sext	50 µm	50 µrad
All dipoles	1000 µm	1000 µrad
Girders	150 μm	150 µrad
BPMs to quads	10 µm	-

E. Musa, "Tuning studies for ballistic optics", FCC-ee optics tuning WG meeting, 6th Nov 2024.

rms hor. orbit (µm)	rms ver. orbit (μm)	rms Δβx/βx %	rms Δβy/βy %	rms Δηx (mm)	rms Δηy (mm)	ε _h (nm)	ε _v (pm)	rms Hor. Δφ	rms Ver. Δφ
131.18	144.79	1.58	1.00	0.86	1.71	0.85	0.31	1.90× 10 ⁻³	1.80× 10 ⁻³

Synchrotron Radiation

Tuning simulations with synchrotron radiation

• Correction of random horizontal and vertical displacement errors with standard deviation of 100 μ m in the arc quadrupoles and sextupoles and 150 μ m to the dipoles. **without SR**

hor. orbit (µm)	ver. orbit (µm)	$\Delta eta_x / eta_x$ %	$\Delta \beta_y / \beta_y$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)	$\epsilon_{\rm h}({\rm nm})$	ε _v (pm)
8.55	8.35	0.35	0.89	2.94	4.37	0.70	0.73

• Correction of random horizontal and vertical displacement errors with standard deviation of 100 μ m in the arc quadrupoles and sextupoles and 150 μ m to the dipoles.

hor. orbit (µm)	ver. orbit (µm)	$\Delta eta_x / eta_x$ %	$\Delta eta_{y} / eta_{y}$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)	$\epsilon_{\rm h}({\rm nm})$	ε _v (pm)
9.91	8.56	1.17	11.38	13.36	0.46	0.71	0.28

Tuning simulations with synchrotron radiation

• Correction of random horizontal and vertical displacement errors with standard deviation of $100 \ \mu m$ in the arc quadrupoles and sextupoles and $150 \ \mu m$ to the dipoles.

	hor. orbit (µm)	ver. orbit (µm)	$\Delta eta_x / eta_x$ %	$\Delta eta_{ m y} / eta_{ m y}$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)	ε _h (nm)	ε _v (pm)
mean	9.9120	8.5602	1.1666	11.3845	13.3624	0.4630	0.7066	0.2813
std	1.3112	0.6557	0.7179	7.1324	5.7058	0.5455	0.0024	0.4129

• Adding horizontal and vertical **rotation** errors with standard deviation of 100 μ m in the arc quadrupoles and sextupoles and 150 μ m to the dipoles.

	hor. orbit (µm)	ver. orbit (µm)	$\Delta eta_x / eta_x$ %	$\Delta eta_{ m y} / eta_{ m y}$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)	ε _h (nm)	ε _v (pm)
mean	9.3580	8.4064	0.9423	9.2066	8.4097	0.7843	0.7070	0.1811
std	0.8505	0.3993	0.5410	5.3534	4.7790	0.6588	0.0024	0.1814

Ballistic Optics

Tuning simulation results for FCC-ee ballistic optics

- Ballistic commissioning optics involves turning off certain IR magnets (200m) around the IP
- Reduce chromaticity, peak beta functions, IR aberrations, remove Synchrotron Radiation from Final Doublet, mitigate instabilities with reduced sextupole strength and establish a straight line reference trajectory around the IP. →Ideal for the first commissioning phases
- It will allow for a smoother start to the machine commissioning process.

Baseline lattice

Ballistic lattice

Adding Dispersion Free Steering

(After beam threading, H&V dispersion correction using orbit correctors)

Parameter	w/o DFS	w DFS	
hor.orbit (µm)	204.83	151.57	
ver. orbit (µm)	255.57	222.34	1.4 DA 6D Nominal DA 6D after correction 1.2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
$\Delta\beta_x/\beta_x\%$	1.32	1.16	1.0 - <u><u><u></u></u> <u><u></u><u></u> <u><u></u></u> <u><u></u></u> <u><u></u></u> <u><u></u></u> <u><u></u></u> </u></u>
$\Delta\beta_y/\beta_y\%$	0.81	0.70	
$\Delta \eta_x$ (mm)	446.47	69.73	
$\Delta \eta_y \ (mm)$	416.40	34.12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ε_{y} (pm)	659.44	4.38	E. Musa. "Tuning studies for ballistic optics

E. Musa, "Tuning studies for ballistic optics", FCC-ee optics tuning WG meeting, 6th Nov 2024.

Ballistic optics: Right after 1^{st} beam threading 150 µm BPM-to-quadrupole

rms hor. orbit (µm)	rms ver. orbit (µm)	$\Delta eta_x / eta_x$ %	$\Delta eta_{ m y} / eta_{ m y}$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)	ε _h (nm)	ε _v (pm)
186.72	264.25	1.48	0.84	93.91	51.24	0.86	9.21

BPMs attached to quadrupoles (10 $\mu m)$

Final correction

Parameter	Prior optics Cor.	Final Cor.		
hor.orbit (µm)	130.23	130.36		
ver. orbit (µm)	144.76	144.75		
$\Delta\beta_x/\beta_x\%$	9.72	1.02		
$\Delta\beta_y/\beta_y\%$	27.37	0.63		
$\Delta \eta_x (mm)$	73.73	0.66		
$\Delta \eta_y (mm)$	54.82	1.68		
$\varepsilon_{y}(pm)$	31.57	0.23		

E. Musa, "Tuning studies for ballistic optics", FCC-ee optics tuning WG meeting, 2^{ed} Oct 2024.

BPMs attached to sextupoles (20 μ m)

Prior to linear optic correction

Final correction 3 failed seeds

8

Parameter	Prior optics Cor.	Final Cor.		
hor.orbit (µm)	144.40	144.49		
ver. orbit (µm)	160.96	160.96		
$\Delta\beta_x/\beta_x\%$	7.42	1.92		
$\Delta\beta_y/\beta_y\%$	10.67	1.14		
$\Delta \eta_x (mm)$	55.17	1.97		
$\Delta \eta_y$ (mm)	1.93	2.00		
$\varepsilon_y(pm)$	3.61	3.0		

E. Musa, "Tuning studies for ballistic optics", FCC-ee optics tuning WG meeting, 2^{ed} Oct 2024.

BPMs attached to sextupoles (10 μ m)

Prior to linear optic correction

Final correction 5 failed seeds

Ballistic optics: Final correction results 10 µm BPM-to-quadrupole after BBA

	rms hor. orbit (µm)	rms ver. orbit (µm)	$\Delta eta_x / eta_x$ %	$\Delta eta_{ m y} / eta_{ m y}$ %	$\Delta \eta_x$ (mm)	$\Delta \eta_y$ (mm)	ε _h (nm)	ε _v (pm)
mean	24.786	24.395	1.122	10.821	14.523	1.159	0.706	0.054
std	1.577	1.113	0.826	8.126	7.819	0.971	0.002	0.065

Adding errors to IR (Ballistic optics)

Elements	Hor. & Ver. displacement	Rotation θ		
Arc quads and sext	50 µm	50 µrad		
IR quads and sext	50 µm	50 µrad		
All dipoles	1000 µm	1000 µrad		
Girders	150 μm	150 µrad		
BPMs to quads	10 µm	10 µm		

E. Musa, "Tuning studies for ballistic optics", FCC-ee optics tuning WG meeting, 6th Nov 2024.

rms hor. orbit (µm)	rms ver. orbit (µm)	rms Δβx/βx %	rms Δβy/βy %	rms Δηx (mm)	rms Δ ηy (mm)	ε _h (nm)	ε _v (pm)	rms Hor. Δφ	rms Ver. Δφ
131.18	144.79	1.58	1.00	0.86	1.71	0.85	0.31	1.90 × 10 ⁻³	1.80 × 10 ⁻³

PETRA III and PETRA IV

Optics correction at PETRA III

(PETRA III-High-Beta Optics p3x_v24)

- The lattice has **246 BPMs**, **620 Correctors**, and **417 quadrupoles**.
- Measurement was with all corrector magnets of type **PKH** (41) and **PKV(55**).
- Optics errors were introduced by changing some **quadrupoles. BPMs noise** included.

PETRA III measurements test (PETRA III-High-Beta Optics p3x_v24)

- The implemented LOCO was utilized.
- The results were applied to the model lattice.
- Including the BPMs and correctors calibration errors in the fit.

• The correction has not been implemented in the machine; another measurement will be conducted.

PETRAIV error tolerances

BPM Errors:

- BPM offsets = 500 µm
- BPM noise (TBT) = 50 μm
- BPM noise (CO) = 0.1 μm
- BPM roll = 400 µrad
- BPM calibration = 5%

Magnet Errors:

- Magnet offsets = 30 µm
- Magnet roll = 200 µrad
- Magnet calibration = 0.1%
- Quadrupole calibration = 0.05%

Corrector Errors:

- Corrector roll = 200 µrad
- Corrector calibration = 2%

Girder Errors:

- Girder offsets = 150 µm
- Girder roll = 200 µrad

RF errors:

- RF phase is random
- RF frequency = 100 Hz
- RF Voltage = 1 kV
- Relative ring circumference = 10⁻⁶