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Main Parameters

Higgs Z

Beam Energy [GeV] 120 45.5

Damping Decrement
(x/y/z, SR)

0.75/0.75/1.5 
[10−2]

4/4/8 
[10−4] 

𝛽𝑥
∗/𝛽𝑦

∗ [m/mm] 0.3/1 0.13/0.9

𝜖𝑥/𝜖𝑦 [nm/pm] 0.64/1.3 0.27/1.4

𝜎𝑧 (SR/BS) [mm] 2.3/4.1 2.5/8.7

𝜎𝑝 (SR/BS) [%] 0.1/0.17 0.04/0.13

𝛽𝑦
∗𝜃/𝜎𝑥 1.2 2.5

Piwinski Angle 4.88 24.23

𝜈𝑠 0.049 0.035

Bunch Population [1010 ] 13 14

𝜉𝑥/𝜉𝑦 0.015/0.11 0.004/0.127

Bunch Number 268 11934

Luminosity/IP
[1034cm−2s−1]

5 115

2 IPs, 2x16.5 mrad
100 km
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• Crab-waist

• Beamstrahlung Effect & 3D flip-flop
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• Linear Arc Map with SR radiation
• One turn map including general chromaticity
• Horizontal crossing angle: Lorentz boost map
• Bunch slice number is about 10 times Piwinski angle
• Slice-Slice collision: Synchro-beam mapping method (or PIC)
• Synchrotron radiation during collision
• Longitudinal wakefield
• Transverse wakefield
• Space charge
• Lattice (element-by-element): APES

Simulation Tool
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Impedance is being updated

• Different results may use different impedance

6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Z/n kloss ky

CDR-2018

IARC-2021

TDR-2022



Horizontal Beam-Beam Instability (X-Z)
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By including the impedance stable areas become narrower 

and are shifted

Larger 𝜈𝑠/𝜉𝑥 is preferred

Growth rate versus bunch population,
w/ ZL 

Growth rate versus horizontal tune, 
w/ and w/o ZL

(CEPC-CDR-Z)

w/o ZL 

w/ ZL, σ mode 



Chromaticity on X-Z instability (simulation)
• Qx’=-8/-4/0/4/8 is scanned at different horizontal tune

• Sign of chromaticity make no difference

• Chromaticity is detrimental (w/o ZL)

• Chromaticity could be helpful (w/ ZL)
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Chromaticity on X-Z instability
(analysis, w/o ZL）
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Chromaticity
Growth rate

@Qx=0.559，w/ Chromaticity

ZL

C. Lin etal,PRAB 25, 011001 (2022)



2nd order chromaticity on X-Z instability
(w/o ZL, simulation)
• 𝜈2=-2000/-800/0/+800/+2000 is scanned in simulation

• Finite 𝜈2 is detrimental for instability

𝜈 𝛿 = 𝜈0 + 𝜈1𝛿 + 𝜈2𝛿
2
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2nd order chromaticity on X-Z instability
w/o ZL, w/o ZT, Analysis

• Analysis results agrees with simulation
• minus 2nd order chromaticity is worse for stability

• The eigen mode distribution induced by finite 
chromaticity is not singular, and is expected to 
appear in simulation

Eigen-mode distribution: Qx=0.558, 𝜈2=-2000
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Effect of local ZT on X-Z instability

• ip2zt = Pi/2, growth rate is lowest 
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Analysis, w/o ZL

Simulation

X-Z instability comes from localized property of Beam-Beam



Vertical mode coupling with ZT(𝜎-mode)
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TMCI threshold is reduced 
from about 21e10 to 11e10

Y. Zhang et al., PRAB 26, 064401 (2023)
K. Ohmi et al., PRAB 26, 111001 (2023)



Mitigation of Vertical TMCI (BB+ZT)
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Growth rate of vertical centroid versus tune with different 
vertical chromaticity. 

Vertical beam size versus one beam’s vertical tune. The other 
beam’s tune is fixed at 0.610. 

Chromaticity Asymmetrical Tunes + Chromaticity

Y. Zhang et al, PRAB 26, 064401 (2023)



Effect of feedback on single bunch instability 
(w/o and w/ chromaticity)

• A simplified resistive damper is used: Δ𝑝𝑖 = −2𝑑𝑝𝑝𝑖

• Strong feedback reduce the TMCI threshold

• Growth rate is lower with feedback above threshold 

• w/ chromaticity, strong feedback could be helpful

E. Metral, PRAB, 24, 041003 (2021)
K. Ohmi et al., eeFACT2022
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w/o chromaticity w/ chromaticity



Feedback on vertical TMCI (Qy’=5)

• With finite tune chromaticity, resistive feedback is helpful to mitigate the instability
• No additional effect from ideal multi-tap (ntap=6) feedback
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• Pickup-> kicker, 
pi/2

• FIR coefficient
+0.846493,
-0.928427,
+0.040751,
+0.322141,
-1.080667,
+0.799708 



Some issues on accurate modeling

• X-Y rotation in Gaussian approximation (See Derong @ BB2024)

• Crab-Waist Transformation (
1

2𝜃
𝑥𝑝𝑦

2) vs Crab-Waist Sextupoles

• Solenoid instead of drift during collision (cp <-> ip)
• Solenoid in the lab frame is constant (𝐵𝑥,𝑠𝑜𝑙 , 𝐵𝑦,𝑠𝑜𝑙 , 𝐵𝑧,𝑠𝑜𝑙)

• In the boost frame, the field is
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Tracking of collision in detector solenoid

• Step-by-step Tracking
• Lorentz Boost (Hirata)
• IP -> CP

• L/2 solenoid

• Momentum kick of (𝑝𝑥, 𝑝𝑦, 𝛿)

• L/2 solenoid

• Collision (beam rotation is considered)
• CP -> IP
• Inverse Lorentz Boost

Solenoid increase from 2 T to 5 T， the collision is no difference



Different model with Δ𝑦@IP (0.3𝜎𝑦
∗)

• w/o sol + CW map, flip-flop

• w/ sol + CW map, stable

• CW sext, flip-flop

• More stable with solenoid
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preliminary



Different model with finite R1@IP

• w/o X-Y rotation, e+ blow up (nearly stable)

• w/ X-Y rotation, e- blow up

• PIC simulation confirm the model w/ X-Y rotation

20

R1= 60e-4 (only e+)
• geometrical luminosity loss 10%
• X-Y rotation: 6 mrad

preliminary



Strong-strong Beam-beam + Lattice

• SAD lattice is fully supported

• Dynamic aperture is benchmarked with SAD

• Parallel: MPI+GPU

• First-time strong-strong simulation in ee machines with element-
by-element tracking in arc
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SuperKEKB

CEPC

Zhiyuan Li etal., NIMA 1064 (2024) 169386

CEPC



Asymmetric Collision – Swap out injection
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e+(inj.) / e-
w/o apert: 39/42(min)
w/  apert: 29/37(min)

• Initial beams:  e+ (collider SR equilibrium) vs e- (booster SR equilibrium)
• Luminosity: same between symmetric(collision equilibrium) and asymmetric collision
• Clear lifetime reduction (e+) with physical aperture

Higgs



Collision versus bunch intensity (w/ aperture)
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Higgs

• Symmetric: Increase linearly with bunch population
• Asymmetric: Peak value at design bunch population

Luminosity Lifetime

• Meet requirements at design bunch population
• Bad lifetime if 𝑁/𝑁0 > 10%



Summary

• Analysis and simulation of the combined effects between beam-
beam and impedance provide clear insights into the underlying 
beam dynamics

• New simulation tools have been (and are being) developed to 
enhance both the accuracy and predictive capacity of related 
study
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