



The 70<sup>th</sup> ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e– Colliders

### Improving Beam Quality and Reliability through Low-Level RF Control in Superconducting Accelerators

Feng QIU, Yuan HE, Jinying MA, Lijuan Yang, Tiancai JIANG, Zheng Gao On behalf of IMP SRF team

Institute of Modern Physics (IMP)





**ONTENTS** 



uality and Reliability through Low-Level RF Control in Superconducting Accelerators (eeFACT2025), 2025/03/02-07, Tsukuba, Japan



### Introduction (RF)



• The Radio Frequency (**RF**) systems in particle accelerators are hardware complexes responsible for generating the accelerating fields, including both high-power RF and low-level RF (**LLRF**).





### Introduction (LLRF)



• Advanced **LLRF** algorithms are crucial for improving the beam quality



### **KEK** Introduction (facilities)



KEK compact Energy Recovery Linac (cERL) & Chinese ADS Front-end (CAFe)





# **ONTENTS**

### Introduction

 $\square 7$ 

### **LLRF** Activities

Reduction of Beam Energy Spread

Transient loading of the 10-mA beam

In-situ mitigation of SRF faults

ML-based Pattern Recognition for SRF faults

uality and Reliability through Low-Level RF Control in Superconducting Accelerators (eeFACT2025), 2025/03/02-07, Tsukuba, Japan



### Pulse Mode Operation @ cERL



- The cERL was once operated in pulse mode to increase beam energy for isotope production
- We observed poor pulse-to-pulse stability under PI control, although intra-pulse stability was satisfactory. Fluctuations in the measured beam energy were noted



### KEK

### **Disturbance Observer-based (DOB) Control**

Disturbance Observer (DOB) ctrl.: Reconstruct disturbance estimation ( $\hat{d}$ ), then cancel d with  $\hat{d}$  from the LLRF control loop



**Microphonics** 

Cav

 $G_p(s)$ 

Inv.

 $G_n^{-1}(s)$ 



### DOB Control (cont'd)

**RF** stabilities (intra-pulse)



• This control method has been shown to significantly enhance both pulse-to-pulse RF stability and beam energy stability



#### **RF stabilities (Pulse-to-pulse)**

F. Qiu\*, et al., Application of disturbance observer-based control on pulsed superconducting radio frequency cavities Phy. Rev. Accel Beam 21, 032003 (2021)



# **ONTENTS**

# Introduction

 $\square 7$ 

### **LLRF** Activities



Reduction of Beam Energy Spread

• Transient loading of the 10-mA beam

In-situ mitigation of SRF faults

ML-based Pattern Recognition for SRF faults

uality and Reliability through Low-Level RF Control in Superconducting Accelerators (eeFACT2025), 2025/03/02-07, Tsukuba, Japan



### Transient Loading of 10 mA Beam @ CA

- $CAFe \rightarrow Stable operation of 10 mA proton beam$ 
  - In March 2021, CAFe achieved stable operation at hundreds of kW for 100 hours, confirming the feasibility 10 mA beam operation.



CERN-COURIER evaluates this achievement as an outstanding accomplishment and a milestone breakthrough in the field of ADS





### **Iterative Learning Control (ILC)**



- **Iterative Learning Control** (ILC)  $\rightarrow$  widely used for beam-loading compensation
  - Calibrate the error between the reference signal (r) and cavity pick-up signal (y) Step1:

 $e_i(k) = r_i(k) - y_i(k)$ 

Update the current feedforward (FF) output  $(u_{j+1})$  using the previous FF  $(u_j)$  and error  $(e_j)$ A matrix or a zero-phase filter Step2: ٠

 $u_{j+1}(k) = \mathbf{Q}_{\mathsf{ILC}}[u_j + \mathbf{L}(e_j)]$ 





Iterative

Learning

Control



### FPGA-based ILC (Basic Idea)



In most cases, a beam pulse can be considered quasi-rectangular, which means the FF could also be rectangular pulse. This assumption may significantly simplify the algorithm design





### **FPGA-based ILC (Confirmation)**



- The new ILC algorithm was demonstrated during the CAFe beam-commissioning
  - High band-width: works in 1 MHz repetitive rate;



C. Y. Xu, et al., Application of a modified iterative learning control algorithm for superconducting radio-frequency cavities, Nucl. Instrum. Methods. A . 955,166237 (2022)



# **ONTENTS**



### **LLRF** Activities



In-situ mitigation of SRF faults

uality and Reliability through Low-Level RF Control in Superconducting Accelerators (eeFACT2025), 2025/03/02-07, Tsukuba, Japan



### **SRF** faults at CAFe



- Two typical SRF faults that were confused CAFe for a long time
  - Field emission (FE)-induced **burst-noise** appears in the cavity pick-up signal
  - **Pondermotive instabilities** typically indicates the non-linear coupling btw the electrical and mechanical modes



The burst noise can lead to **an unexpected LLRF response,** resulting in a cavity fault The accelerating gradient and detuning beginning to oscillate with increasing amplitude





- When the LLRF system detects a burst-noise event, it immediately generates a burst-noise trigger, which remains active for a time interval of ΔT (>15 µs, longer than the burst noise period)
- During the burst-noise period, PI output  $(u_{PI})$  is **overwritten by**  $u_{delay}$  which holds the data from  $u_{PI}$ **0.8 µs prior** to burst-noise trigger; then the  $u_{PI}$  is maintained until the trigger is over







- The unexpected LLRF response can be eliminated
- The effectiveness of the proposed algorithm was confirmed during the long-term operation







• Proper feedback control may shrink the unstable region



S. K. Koscielniak, Ponderomotive Instability of Generator-Driven Cavity, in Proc. of IPAC 2019, Melbourne, Australia, 2019



### **Mitigation of Ponderomotive Instabilities**







# **NONTENTS**

# Introduction

 $\Pi 7$ 

### **LLRF** Activities

Reduction of Beam Energy Spread

Transient loading of the 10-mA beam

In-situ mitigation of SRF faults

ML-based Pattern Recognition for SRF faults

uality and Reliability through Low-Level RF Control in Superconducting Accelerators (eeFACT2025), 2025/03/02-07, Tsukuba, Japan



### **Classification of SRF Faults**



- Collect the critical-waveform data (cavity voltage, forward/reflected...) by digital low-level radio-frequency (LLRF) DAQ systems
- Data-analysis were performed by subject matter experts



Cavity voltage ( $V_c$ ), forward ( $V_f^*$ )/reflected ( $V_r^*$ ) and DAC output ( $V_{LLRF}$ ) signals are recorded (10 kHz ~ 100 kHz, 50000 samples for each signal)



Expert-based fault analysis requires expertise and intuition (which makes it difficult to provide real-time fault feedback to operators)

### $\rightarrow$ Automatically Fault Classification (using *machine learning tech.*)

C. Tennant et al., Phys. Rev. Accel. Beams, 11 871 (2020) 114601



### **ML-based SRF Faults Classification**



- Eight patterns were recognized and labeled by subject matter experts
- Expert-based feature engineering method were applied





### **Feature Engineering**



### Distribution of expert-defined features

Eight features for each fault events

| Features | <b>Q</b> <sub>id</sub> | <b>F</b> <sub>max</sub> | <b>F</b> <sub>ratio</sub> | ΔΘ                    | <b>E</b> <sub>id</sub> | $\Delta  ho_{max}$ | r <sub>rms1</sub>   | <b>r</b> <sub>rms2</sub> |
|----------|------------------------|-------------------------|---------------------------|-----------------------|------------------------|--------------------|---------------------|--------------------------|
| Method   | Modeling               | Freq. Domain Analysis   |                           | Signal Characteristic |                        |                    | Statistical Feature |                          |

#### **Merits**



- Limited numbers of features
- Features are physically meaningful
- Features are not affected by the DAQ sampling rate

### **Drawbacks**



- Specific algorithms are required
- Generalizability & Scalability need further validation





### **Result of the ML Model**

- Prediction Accuracy: ~94% (Expert) v.s. ~89% (AR)
- XGB (eXtreme Gradient Boosting) model wins by a small margin



#### abrupt signals (e.g., burst-noise)



#### XGB SVM (OneVsOne) RFs $0.860 \pm 0.0108$ $0.900 \pm 0.0101$ AR (3) $0.895 \pm 0.0129$ AR (4) $0.862 \pm 0.00980$ $0.891 \pm 0.0115$ $0.884 \pm 0.00711$ $0.886 \pm 0.00829$ AR (5) $0.862 \pm 0.00970$ $0.885 \pm 0.00729$ $0.918 \pm 0.0124$ $0.945 \pm 0.00802$ Expert $0.947 \pm 0.0105$ $0.949 \pm 0.00701$ $0.959 \pm 0.00612$ AR + Expert $0.959 \pm 0.00408$

### **Expert Features**



F. Qiu, Improving Beam Quality and Reliability through Low-Level RF Control in Superconducting Accelerators (eeFACT2025), 2025/03/02-07, Tsukuba, Japan





### **Big Data Analysis**



- ML models can automatically classify SRF faults
- Big data analysis helps confirm which cavity suffers from specific fault patterns.











- Enhancing RF stability and reducing beam energy spread using DOB control strategies
- Managing transient loading of the 10 mA beam with new Iterative Learning Control (ILC) strategies
- Achieving AI-based automated SRF fault classification
- Mitigating SRF faults using flexible LLRF algorithms





## Thanks for your attention





# **Back-up Slides**

### Subcategorization of Quenching Faults

• The ML models suggest that the quench events can further divided into 3 patterns

**KEK** 



IMP



### **Dark-current Characteristic**



• The "partial E-quench" is accompanied by **dark-current** which can be seen as a kind of beamloading. It is possible to characterize the dark current using the **"beam induced RF transient"** 



F. Qiu\* et al., In-situ mitigation strategies of field emission induced cavity fault using low-level radio-frequency system, Nucl. Sci. Tech. 33:140, 2022





• Two types of **ponderomotive instabilities** are present in superconducting cavities: **monotonic** and **oscillatory** instabilities. In CAFe, oscillatory instability is the main issue.

