Contribution ID: 552 Contribution code: MOPB096

Low energy multi-beam dynamics in novel LANSCE front end

Monday 26 August 2024 16:00 (2 hours)

The proposed novel 100 MeV injector for the LANSCE Accelerator Facility* is designed to replace the existing 750-keV Cockcroft-Walton-columns-based injector. The new Front End includes two independent low-energy transports for H+ and H- beams merging at the entrance of a single RFQ, with the subsequent acceleration of particles in the new Drift Tube Linac. The challenge of the design is associated with the necessity of simultaneous acceleration of protons and H- ions with different beam currents, beam charges per bunch, beam emittances, and space charge depression, in a single RFQ and DTL, while injection beam energy is reduced from 750 keV to 100 keV. Acceleration of various beams in a single RFQ provides less flexibility for optimal adjustment of acceleration and focusing parameters concerning the existing LANSCE setup. The paper discusses details of self-consistent multi-beam dynamics in the proposed injector.

Footnotes

*Y. K. Batygin et al., "Advancement of LANSCE Front End Accelerator Facility", in Proc. IPAC'21, Campinas, Brazil, May 2021, p.1894 (2021).

Funding Agency

The research presented in this paper was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20240177ER.

Primary author: BATYGIN, Yuri (Los Alamos National Laboratory)Presenter: BATYGIN, Yuri (Los Alamos National Laboratory)Session Classification: Monday Poster Session

Track Classification: MC3: Proton and Ion Accelerators and Applications: MC3.2 Ion linac projects