Contribution ID: 528 Contribution code: MOPB008 Type: Poster Presentation

Photocathode drive laser upgrade for the Advanced Photon Source linac

Monday 26 August 2024 16:00 (2 hours)

A Ytterbium-based photocathode gun drive laser is proposed for the Advanced Photon Source linac to replace the existing antiquated Nd:Glass laser. The proposed laser will readily operate at 30 Hz providing 0.3 mJ of 257-nm UV radiation per pulse yielding 1 nC from our copper cathode, s-band gun in support of user operations. In addition, the laser allows generation of lower-charge, low-emittance electron beams for high-brightness experiments in the APS Linac Extension Area. An advantage of updating the PC Gun drive-laser is that the configuration includes a downstream 3-m-long accelerating structure; this provides an additional 35-40 MeV of energy at the linac output over what is presently available from either of the two thermionic-cathode guns. Higher linac output energy will enhance stability for high-charge operation of the new storage-ring. We outline the laser physics requirements for our LCLS-I-style PC gun and summarize the expected beam performance.

Footnotes

Funding Agency

This work is supported by the U.S. D.O.E.,Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02- 06CH11357.

Primary author: DOOLING, Jeffrey (Argonne National Laboratory)

Co-authors: LUMPKIN, Alex (Argonne National Laboratory); ZHOLENTS, Alexander (Argonne National Laboratory); WOOTTON, Kent (Argonne National Laboratory); PIOT, Philippe (Northern Illinois University); BERG, William (Argonne National Laboratory); SUN, Yine (Argonne National Laboratory)

Presenter: DOOLING, Jeffrey (Argonne National Laboratory)

Session Classification: Monday Poster Session

Track Classification: MC1: Beam Dynamics, Extreme Beams, Sources and Beam-Related Technologies: MC1.2 Electron and ion sources, guns, photo injectors, charge breeders