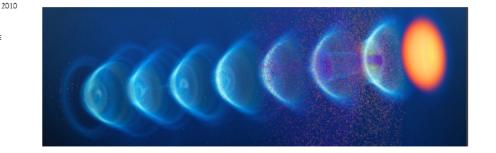
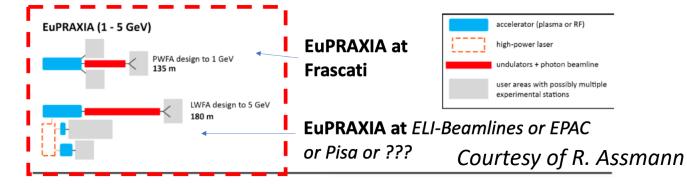


14th International Particle Accelerator Conference

PAC 23 7 - 12 May 2023 VENICE, ITALY


IPAC23

Challenges of plasma cell-based accelerators


Enrica Chiadroni (SBAI Dept. Sapienza University of Rome and INFN-LNF)

Outline

- Saturation of conventional accelerators technology
- Novel acceleration techniques
 - Plasma-based accelerators driven either by laser or particle beams

 Towards compact facilities for High Energy Physics studies and novel radiation sources production

LHC

LEP II

LC500

e+e- Colliders

(Jec) 1,000

ONSTITUENT COLLISION ENERGY

Hadron Colliders

ADONE

1970

Prin-Stan, VEPP II, ACO

1980

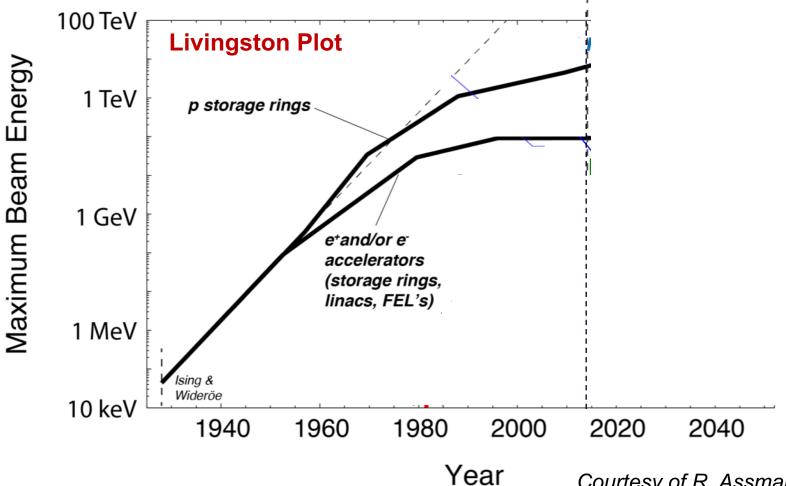
1990

YEAR OF COMPLETION

M. Tigner, DOES ACCELERATOR-BASED PARTICLE

2000

Tevatron


CESR

VEPP IV SPEAR II SPEAR, DORIS, VEPP III

SppS

Saturation of Accelerator Technology



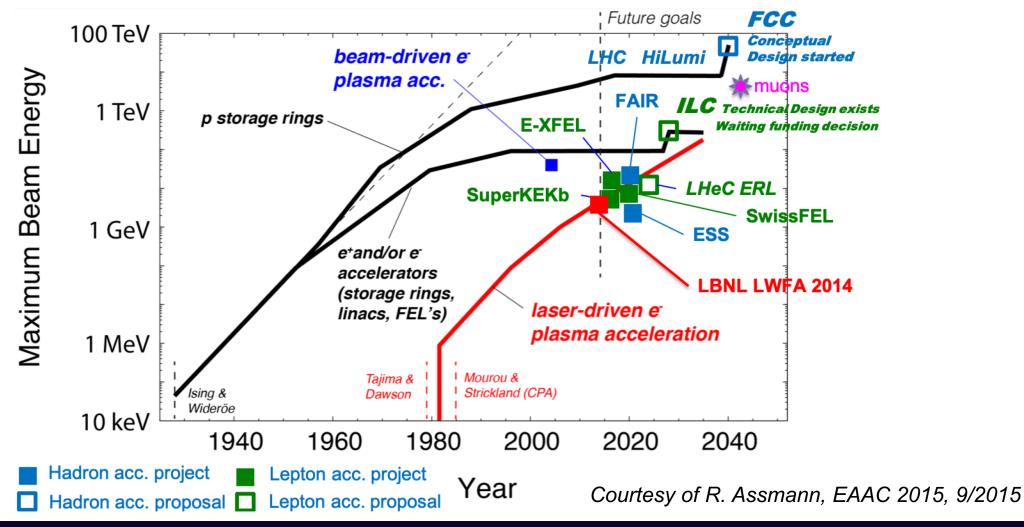
Courtesy of R. Assmann, EAAC 2015, 9/2015

Accelerating Field Limits

E. Chiadroni

Student Tutorials 5.6

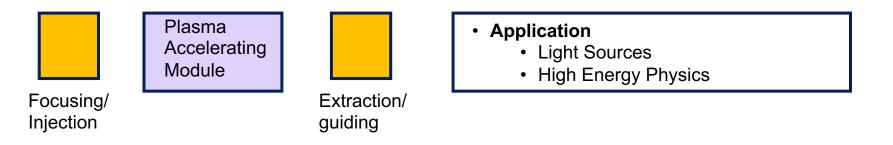
May


- Gradient limited by material breakdown
 - e.g. X-band demonstration around 120 MV/m)
- High-gradient field => reduction of operating wavelength, from RF to the THz

 $E_s(MV/m) = 220[f(GHz)]^{1/3}$

- Challenges in power generation
 - new paradigma in the excitation of accelerating waves

Updated Livingston Plot



Towards Compact Facilities

- Multi GeV acceleration in cm scale plasma structures
- Acceleration of high brightness electron beams and their transport up to the final application, preserving the high quality of the 6D beam phase space

- Injection and matching to plasma accelerating module
- Extraction and guiding to final application

International Scenario

PRESENT EXPERIMENTS

Demonstrating **100 GV/m** routinely

Demonstrating **GeV** electron beams

Demonstrating basic quality

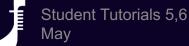
EuPRAXIA INFRASTRUCTURE

Engineering a high quality, compact plasma accelerator

5 GeV electron beam for the 2020's

Demonstrating user readiness Pilot users from FEL, HEP, medicine, ...

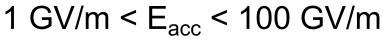
PRODUCTION FACILITIES

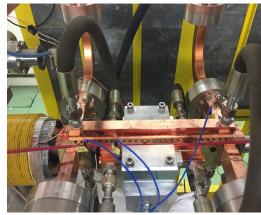

Plasma-based **linear** collider in 2040's

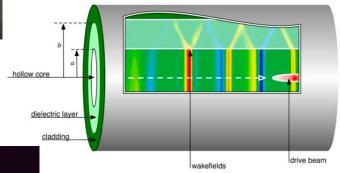
Plasma-based **FEL** in 2030's

Medical, industrial applications soon

Courtesy R. Assmann




High Gradient Options

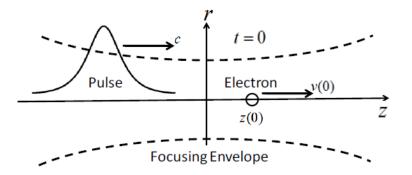

- RF accelerating structures, from Xband to K-band 100 MV/m < E_{acc}< 1 GV/m
- Dielectrict structures, laser or particle driven

 $1 \text{ GV/m} < \text{E}_{\text{acc}} < 5 \text{ GV/m}$

Plasma accelerator, laser or particle driven

Acceleration in Vacuum

In vacuum, the motion of an electron in a laser field determined by the Lorentz force equation


$$\vec{E}(\vec{r},t) = \vec{E}_s(\vec{r},t)\cos{(\omega t)}$$
 is

"direct" laser acceleration

$$\frac{\vec{p}}{dt} = -e\left[\frac{\vec{E}}{E} + \frac{1}{c}\left(\vec{v} \times \vec{B}\right)\right]$$
 "r

"ponderomotive" laser acceleration

Let consider an electron initially (t=0) on the beam axis of the laser at z = z(0), moving in the longitudinal direction with velocity $\vec{v}(0) = v(0)\hat{z}$

Acceleration in Vacuum

When a laser field propagating along the *z* axis is focused in vacuum, the laser spot size and intensity, assuming a fundamental Gaussian mode, evolve as

$$r_{s} = r_{0}\sqrt{1 + \frac{z^{2}}{Z_{R}^{2}}} \qquad I = I_{0}\frac{r_{0}^{2}}{r_{s}^{2}}e^{-\frac{2r^{2}}{r_{s}^{2}}}$$
$$Z_{R} = \frac{kr_{0}^{2}}{2} \qquad \text{Rayleigh length}$$

The finite laser spot size implies the existence of an axial component of the laser electric field via

$$\nabla \cdot \vec{E} = 0$$
, i.e. $E_z \approx \frac{1}{kr_0} E_{\perp}$

The amplitude of the axial field can be very large: the axial field might be directly used for laser acceleration.

However,
$$v_{ph} > c$$
 and near the focus is $\frac{v_{ph}}{c} \cong 1 + \frac{1}{kZ_R}$

Since $v_{ph} > c$, electrons with $v_z < c$ will phase slip with respect to the accelerating field and decelerate.

Lawson-Woodward Theorem

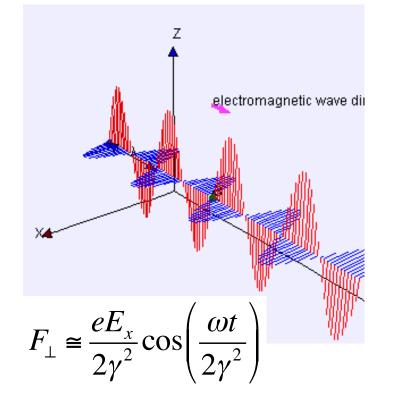
The net energy gain of a relativistic electron interacting with an electromagnetic field **in vacuum** is zero

The theorem assumes that

(i) the em field is in vacuum with no walls or boundaries present

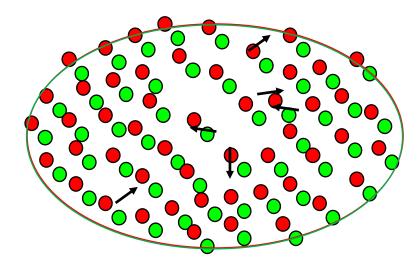
(ii) the electron is highly relativistic ($v \approx c$) along the acceleration path

(iii) no static electric or magnetic fields are present


(iv) the region of interaction is infinite

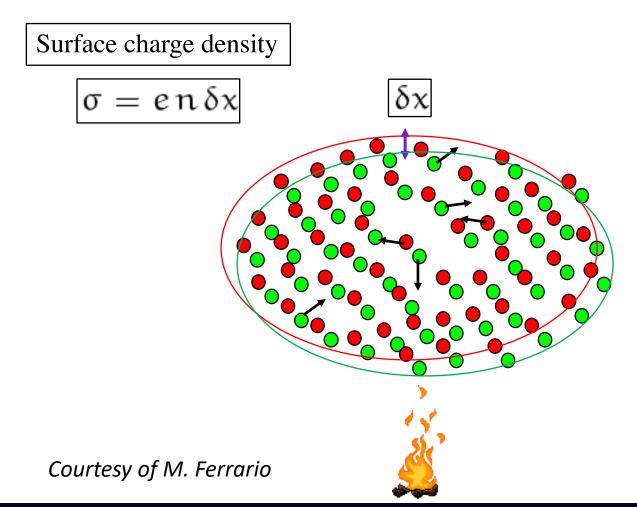
(v) ponderomotive effects (nonlinear forces, e.g. $\mathbf{v} \times \mathbf{B}$ force) are neglected

Acceleration mechanism must violate the Lawson-Woodward theorem


J.D. Lawson, IEEE Trans. Nucl. Sci. NS-26, 4217, 1979 P.M. Woodward, J. Inst. Electr. Eng. 93, 1554, 1947

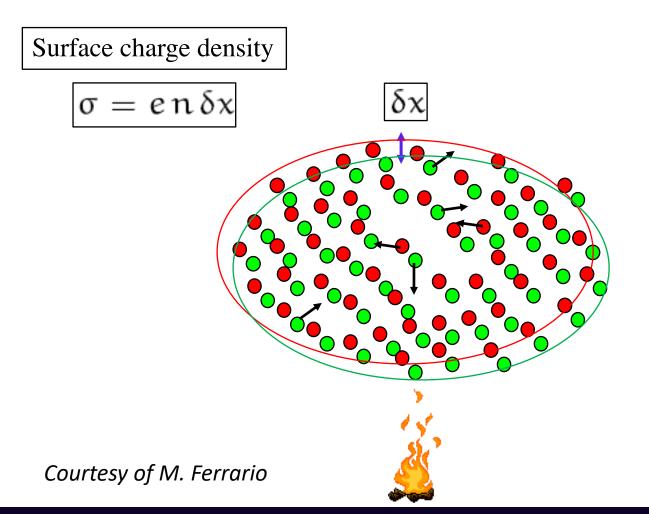
Plasma Model

Courtesy of M. Ferrario



Student Tutorials 5,6 May

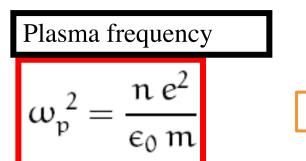
Plasma Model



Student Tutorials 5,6 May

Plasma Model

Surface electric field


$$E_x = -\sigma/\epsilon_0 = -e n \, \delta x/\epsilon_0$$

Restoring force

$$m\frac{d^2\delta x}{dt^2} = e E_x = -m \omega_p^2 \delta x$$

Plasma oscillations

$$\delta \mathbf{x} = (\delta \mathbf{x})_0 \, \cos\left(\omega_p \, \mathbf{t}\right)$$

Collective behavior !!

IPAC 23

Student Tutorials 5,6 May

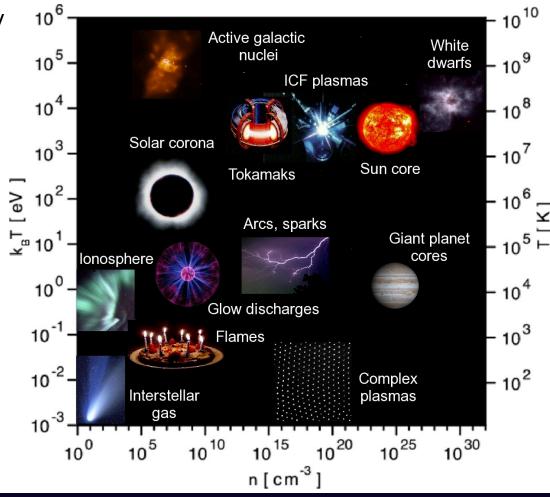
Plasma Definition

- A partially or completely ionized gas, globally neutral, is a plasma if it exhibits a collective behavior
 - Coulomb shielding
 - Dimensions >> Debye length

$$\lambda_D = \sqrt{\frac{kT\varepsilon_0}{ne^2}}$$

Plasma Oscillations
• Temporal response >>
$$\omega_p^{-1}$$
 $\omega_p = \sqrt{rac{ne^2}{m \varepsilon_0}}$

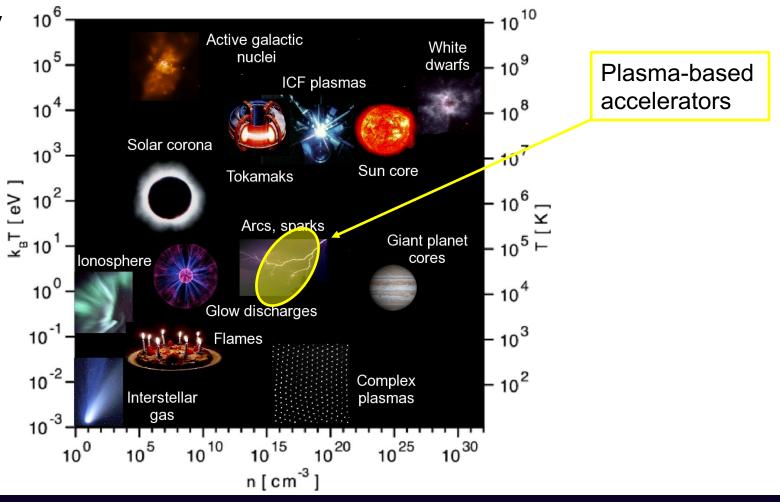
• The large electric fields a plasma can sustain are supported by collective motion of plasma electrons, forming a **space charge disturbance** moving at a speed slightly smaller than *c*



•

Plasma States

In Nature and in Laboratory



Plasma for Accelerators

In Nature and in Laboratory

Student Tutorials 5,6 May

Laser-driven Plasma Wakefield Acceleration (LWFA)

Let us consider a charge q in an oscillating electric field with a non-uniform envelope

 $\vec{E}(\vec{r},t) = \vec{E}_s(\vec{r},t)\cos\left(\omega t\right)$ Laser Field (LWFA)

Hypotheses

1. Slowly varying envelope approximation (SVEA): $\vec{E}_s(\vec{r},t) \approx \vec{E}_s(\vec{r})$

2. Non relativistic equation of motion

$$m\frac{d\vec{v}}{dt} = q\left[\vec{E}(\vec{r},t) + \vec{v} \times \vec{B}(\vec{r},t)\right]$$

 $ec{v} imes ec{B}(ec{r},t) \ll ec{E}(ec{r},t) \;\;$ but not negligible (II order theory)

3. Position of q = "slow" drift + "fast" oscillation $\vec{r}(t) = \vec{r}_0(t) + \delta \vec{r}_1(t)$ $\delta \vec{r}_1(t) \ll \vec{r}_0(t) \quad |\vec{v}_0| \ll |\vec{v}_1| \quad \left| \frac{d \vec{v}_0}{dt} \right| \ll \left| \frac{d \vec{v}_1}{dt} \right|$

Let's first neglect the **B** field and Taylor expand the **E** field around: $ec{r_0}(t)$

$$m\frac{d\vec{v}}{dt} = m\frac{d\vec{v}_0}{dt} + m\frac{d\vec{v}_1}{dt} = q \begin{bmatrix} \vec{E}_s(\vec{r}_0) + (\delta\vec{r}_1 \cdot \nabla) \vec{E}_s(\vec{r}_0) \end{bmatrix} \cos(\omega t)$$

$$\approx \vec{E}_s(\vec{r}_0)$$
Hyp. III
$$m\frac{d\vec{v}_1}{dt} \approx q\vec{E}_s(\vec{r}_0)\cos(\omega t)$$

$$\vec{v}_1 = \frac{q}{m\omega}\vec{E}_s(\vec{r}_0)\sin(\omega t)$$

$$\delta\vec{r}_1 = -\frac{q}{m\omega^2}\vec{E}_s(\vec{r}_0)\cos(\omega t)$$

IPA(

Moreover from III Maxwell equation:

$$\nabla \times \vec{E} = \begin{bmatrix} \nabla \times \vec{E}_s(\vec{r}_0) \end{bmatrix} \cos(\omega t) = -\frac{\partial \vec{B}}{\partial t} \qquad \vec{B}(\vec{r}_0, t) = -\frac{1}{\omega} \begin{bmatrix} \nabla \times \vec{E}_s(\vec{r}_0) \end{bmatrix} \sin(\omega t)$$
Then, the particle motion equation
$$m\frac{d\vec{v}}{dt} = q \begin{bmatrix} \vec{E}(\vec{r}, t) + \vec{v} \times \vec{B}(\vec{r}, t) \end{bmatrix}$$

$$q(\delta \vec{r}_1 \cdot \nabla) \vec{E}_s(\vec{r}_0) \cos(\omega t)$$

$$m\frac{d\vec{v}}{dt} = m\frac{d\vec{v}_0}{dt} + m\frac{d\vec{v}_1}{dt} = q\vec{E}_s(\vec{r}_0) \cos(\omega t) + \begin{bmatrix} -\frac{q^2}{m\omega^2} \left(\vec{E}_s(\vec{r}_0) \cdot \nabla\right) \vec{E}_s(\vec{r}_0) \cos(\omega t) \right)^2$$

$$-\frac{-q^2}{m\omega^2} \underbrace{\vec{E}_s(\vec{r}_0) \times \left(\nabla \times \vec{E}_s(\vec{r}_0)\right) \sin(\omega t)^2}_{q\vec{v}_1 \times \vec{B}(\vec{r}, t)}$$

Then, the particle motion equation

$$m\frac{d\vec{v}}{dt} = q\left[\vec{E}(\vec{r},t) + \vec{v} \times \vec{B}(\vec{r},t)\right]$$

$$m\frac{d\vec{v}_0}{dt} = \frac{-q^2}{m\omega^2} \left[\left(\vec{E}_s(\vec{r}_0) \cdot \nabla \right) \vec{E}_s(\vec{r}_0) \cos\left(\omega t\right)^2 + \vec{E}_s(\vec{r}_0) \times \left(\nabla \times \vec{E}_s(\vec{r}_0) \right) \sin\left(\omega t\right)^2 \right]$$

$$\left\langle m\frac{d\vec{v}_0}{dt} \right\rangle_T = \frac{-q^2}{2m\omega^2} \left[\left(\vec{E}_s(\vec{r}_0) \cdot \nabla \right) \vec{E}_s(\vec{r}_0) + \vec{E}_s(\vec{r}_0) \times \left(\nabla \times \vec{E}_s(\vec{r}_0) \right) \right] \\ \frac{1}{2} \nabla \left[E_s(\vec{r}_0)^2 \right]$$

Ponderomotive Force

$$\left\langle m \frac{d\vec{v}}{dt} \right\rangle_T = \left\langle m \frac{d\vec{v}_0}{dt} \right\rangle_T = \frac{-q^2}{4m\omega^2} \nabla \left[\vec{E}_s(\vec{r}_0)^2 \right] \quad \text{Ponderomotive force}$$

Ponderomotive force per unit volume

$$\frac{-q^2}{4m\omega^2\epsilon_0}\nabla\left[\epsilon_0 E_s(\vec{r}_0)^2\right] = -\frac{\omega_p^2}{\omega^2}\nabla\left[\frac{\left\langle\epsilon_0 E^2\right\rangle}{2}\right]$$

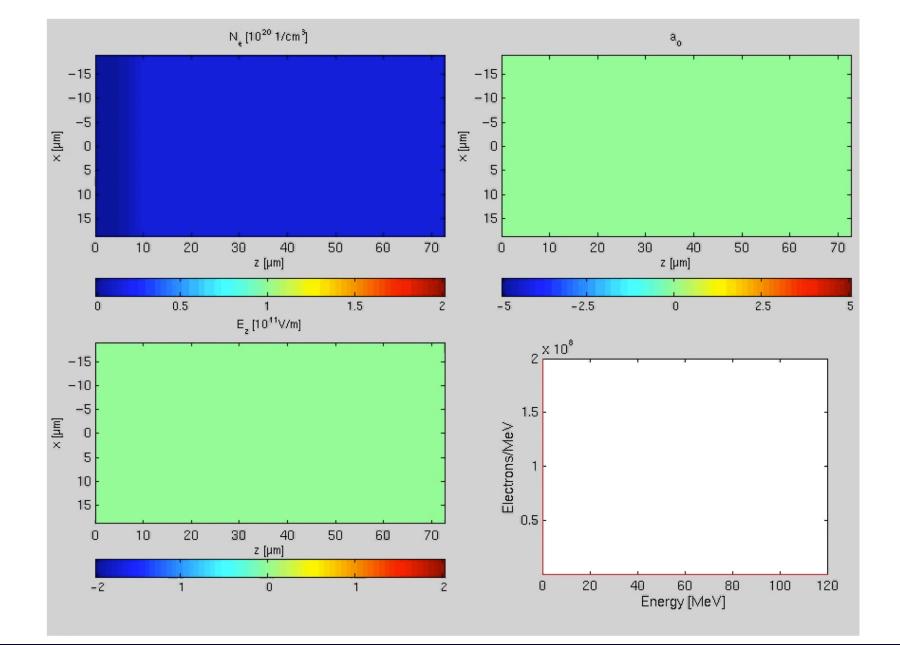
$$F_{pond} \propto -q^2 \frac{\nabla(\text{wave intensity})}{m} = -q^2 \frac{\nabla I}{m}$$

Any charge escapes from the region of greater radiation intensity, like under a pressure ...

Electrons undergoes to a greater force than ions (force depends on the mass, ... **pondus**)

Limits to Acceleration Length

- Laser pulse diffraction
 - Limits laser-plasma interaction length to ~ Rayleigh range
 - **SOLUTION**: transverse plasma density tailoring => guiding capillary
- Electron dephasing
 - Slippage between e-beam and plasma wave


$$L_{\text{dephase}} = \lambda_p / 2(1 - \beta_p) \approx \lambda_p^3 / \lambda^2$$

- **SOLUTION**: longitudinal plasma density tailoring => tapered density or capillary
- Laser pulse energy depletion
 - Rate of laser energy deposition into plasma wave excitation
- $L_{\rm deplete} \propto n^{-3/2} \lambda^{-2}$

SOLUTION: Staging

Student Tutorials 5,6 May

The Dawn of Compact Accelerators

Monoenergetic beams of relativistic electrons from intense laser-plasma interactions

S. P. D. Mangles¹, C. D. Murphy^{1,2}, Z. Najmudin¹, A. G. R. Thomas¹, J. L. Collier², A. E. Dangor¹, E. J. Divall², P. S. Foster², J. G. Gallacher³, C. J. Hooker², D. A. Jaroszynski³, A. J. Langley², W. B. Mori⁴, P. A. Norreys², F. S. Tsung⁴, R. Viskup³, B. R. Walton¹ & K. Krushelnick¹

High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding

C. G. R. Geddes^{1,2}, Cs. Toth¹, J. van Tilborg^{1,3}, E. Esarey¹, C. B. Schroeder¹, D. Bruhwiler⁴, C. Nieter⁴, J. Cary^{4,5} & W. P. Leemans¹

A laser-plasma accelerator producing monoenergetic electron beams

J. Faure¹, Y. Glinec¹, A. Pukhov², S. Kiselev², S. Gordienko², E. Lefebvre³, J.-P. Rousseau¹, F. Burgy¹ & V. Malka¹

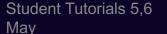


30 September 2004

Sounds of air

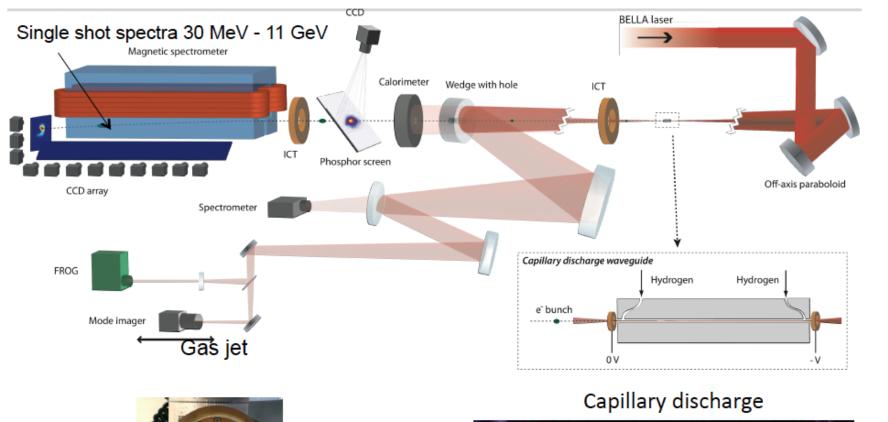
technology feature RNA interference

and sea



International weekly journal of science

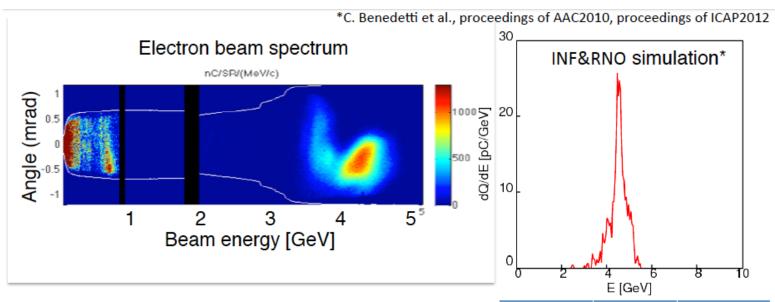
Human ancestry One from all and all from one



September 2004

Experiments at LBNL

Big Laser In


The BELLA laser was focused by the 14 m focal length off-axis parabola onto a gas jet or capillary discharge targets

Student Tutorials 5,6

Experiments at LBNL

4.25 GeV beams have been obtained from 9 cm plasma channel powered by 310 TW laser pulses (15 J)

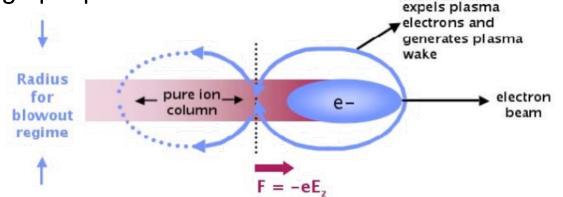
- Laser (E=15 J):
 - Measured) longitudinal profile (T₀ = 40 fs)
 - Measured far field mode ($w_0 = 53 \mu m$)
- Plasma: parabolic plasma channel (length 9 cm, n₀~6-7x10¹⁷ cm⁻³)
- Exp.
 Sim.

 Energy
 4.25 GeV
 4.5 GeV

 ΔE/E
 5%
 3.2%

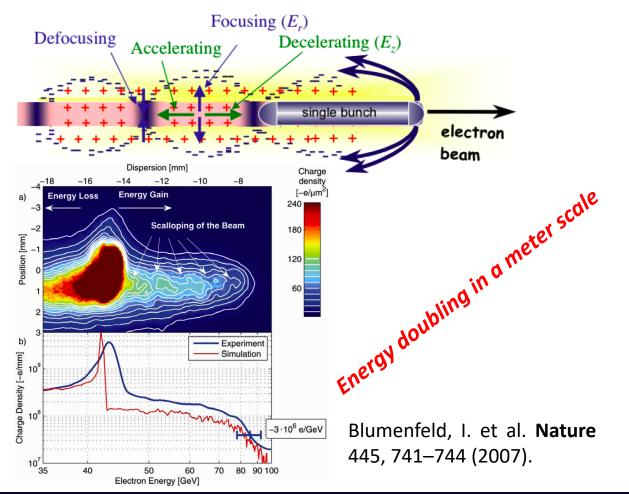
 Charge
 ~20 pC
 23 pC

 Divergence
 0.3 mrad
 0.6 mrad


W.P. Leemans et al., PRL 2014

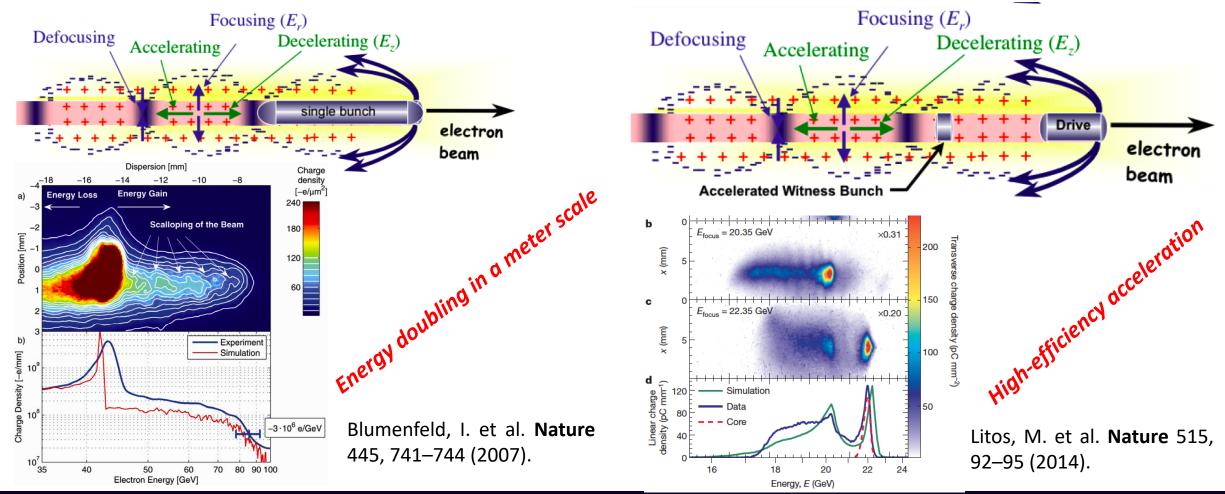
Particle-driven Plasma Wakefield Acceleration (PWFA)

- The high-gradient wakefield is driven by an intense, high-energy charged particle beam as it passes through the plasma.
- The space-charge of the electron bunch blows out plasma electrons which rush back in and overshoot setting up a plasma oscillation



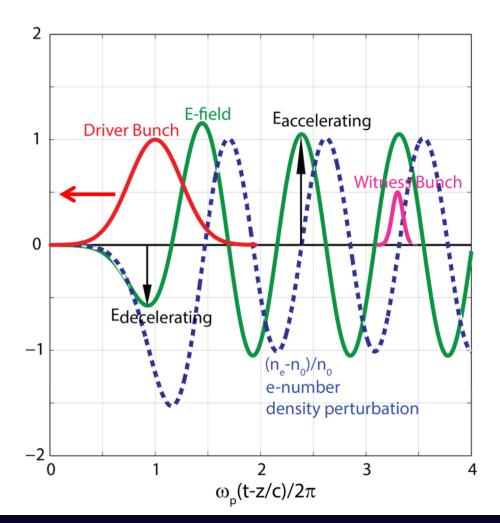
- First demonstration of the excitation of a wakefield by a relativistic beam in the linear regime, i.e. beam density typically less than the plasma density => J. Rosenzweig et al., Phys. Rev. Lett. 61, 98 (1988)
- Peak acceleration gradient ~ 1.6 MeV/m, but the experiment clearly showed the wakefield persisting for several plasma wavelengths.

Particle-driven Plasma Wakefield Acceleration (PWFA)



Student Tutorials 5,6 May

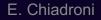
Particle-driven Plasma Wakefield Acceleration (PWFA)

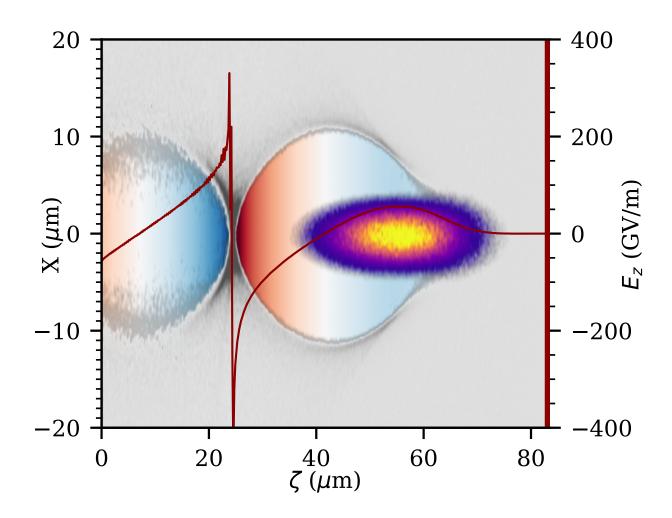


Student Tutorials 5,6 May

E. Chiadroni

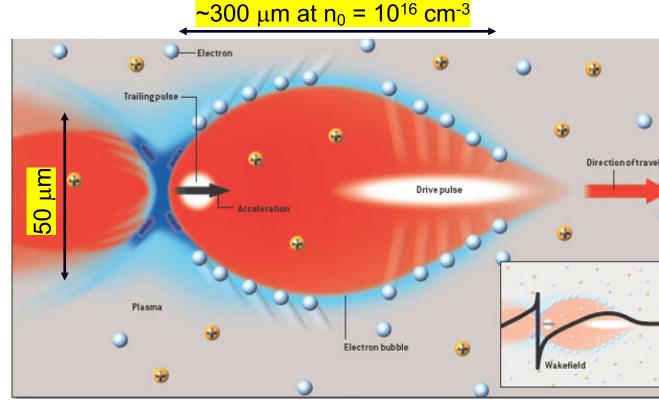
IPAC₂₃


From Linear Regime ...


Note: Focusing force is sinusoidal

... to Quasi Linear and Non Linear Regime

Student Tutorials 5,6 May



Breakdown Limit

- The **ionized plasma** in a gas-filled discharge capillary, a gas cell or a gas jet can sustain accelerating gradient 2-3 orders of magnitude larger than in conventional RF-based accelerators
- Maximum accelerating field a plasma can ٠ sustain: Wave breaking field

$$E_0 = \frac{m_e c \omega_p}{e} \approx 100 [\frac{GeV}{m}] \cdot \sqrt{n_0 [10^{18} cm^{-3}]}$$

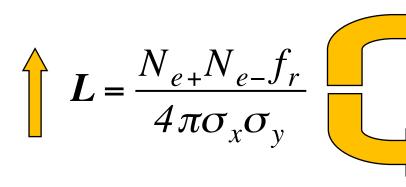
Characteristic scale length of the accelerating field, i.e. the plasma wake, is the plasma wavelength,

$$\lambda_p(\mu m) \approx \frac{3.3 \cdot 10^{10}}{\sqrt{n_0(cm^{-3})}}$$

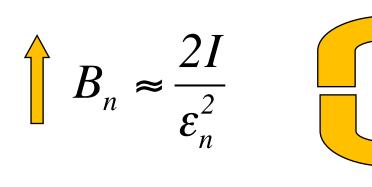
May

Gas-filled Discharge Capillary

First EuPRAXIA plasma source enabling **1.1 GeV** (1.5 GV/m) in **40 cm** length capillary ($n = 10^{16}$ cm⁻³)


Courtesy of A. Biagioni (INFN-LNF)

Student Tutorials 5,6 May



High Quality Beams

-Small spot size => **low emittance**

-**Short pulse** (ps to fs)

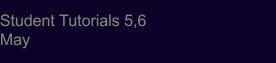
-Little spread in transverse momentum and angle => **low emittance**

Student Tutorials 5,6 May

Towards the Applications

- Extraction from plasma accelerating module
 - plasma fields stronger than in conventional accelerators

$$G(MT/m) = \frac{F_r}{ecr} \approx 3n(10^{17} \ cm^{-3})$$


• beams experience huge transverse size variation when propagating from the plasma outer surface to the conventional focusing optics

$$\sigma_x \sim \mu m \qquad \qquad \sigma_{x'} \sim mrad$$

- the particle transverse motion becomes extremely sensitive to energy spread
- the beam angular divergence has to be reduced and the transverse spot size increased to limit the chromatic induced emittance degradation in vacuum

$$\varepsilon_n^2 = <\gamma >^2 (\sigma_E^2 \sigma_x^2 \sigma_{x'}^2 + \varepsilon^2) \approx <\gamma >^2 (\sigma_E^2 \sigma_{x'}^4 s^2 + \varepsilon^2)$$

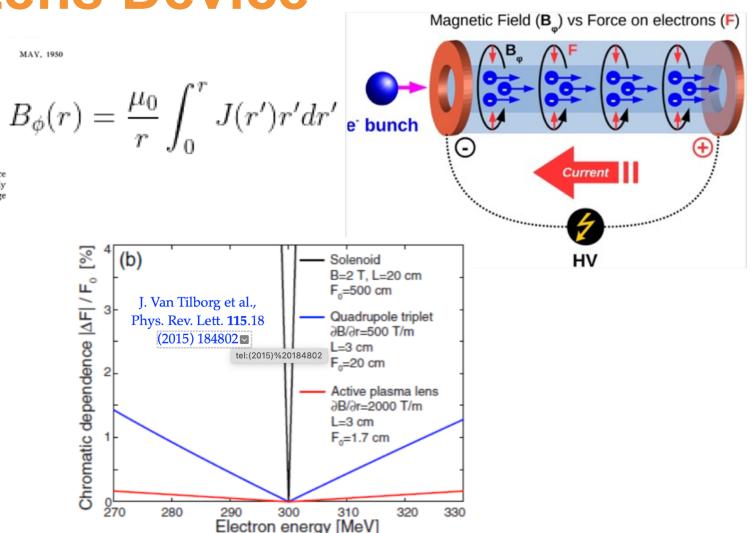
M. Migliorati et al., PRST AB **16**, 011302 (2013)

Mav

Active Plasma Lens Device

THE REVIEW OF SCIENTIFIC INSTRUMENTS

VOLUME 21, NUMBER 5

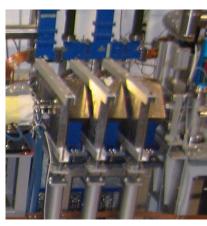

A Focusing Device for the External 350-Mev Proton Beam of the

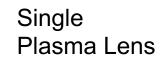
184-Inch Cyclotron at Berkeley

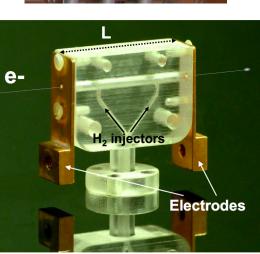
W. K. H. PANOFSKY AND W. R. BAKER Department of Physics, Radiation Laboratory, University of California, Berkeley, California (Received January 11, 1950)

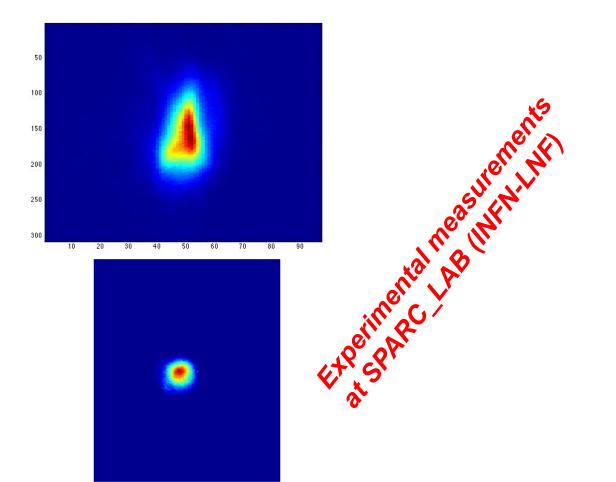
A device has been constructed to focus the external beam of the 184-in. cyclotron at Berkeley. The device consists of a cylindrical tube 4 ft. in length and 3 in. in diameter, which contains a longitudinal arc of nearly uniform current density. Such a device will focus any beam of cylindrical symmetry. Owing to the large power requirements of such a device it is applicable only to very short pulsed beams.

- Cylindrical symmetry
 - purely radial focusing effect
- Tunability
- Focusing strength $\propto \gamma^{-1}$
- High focusing gradient ~ kT/m
 - short focal length
 - weak chromaticity



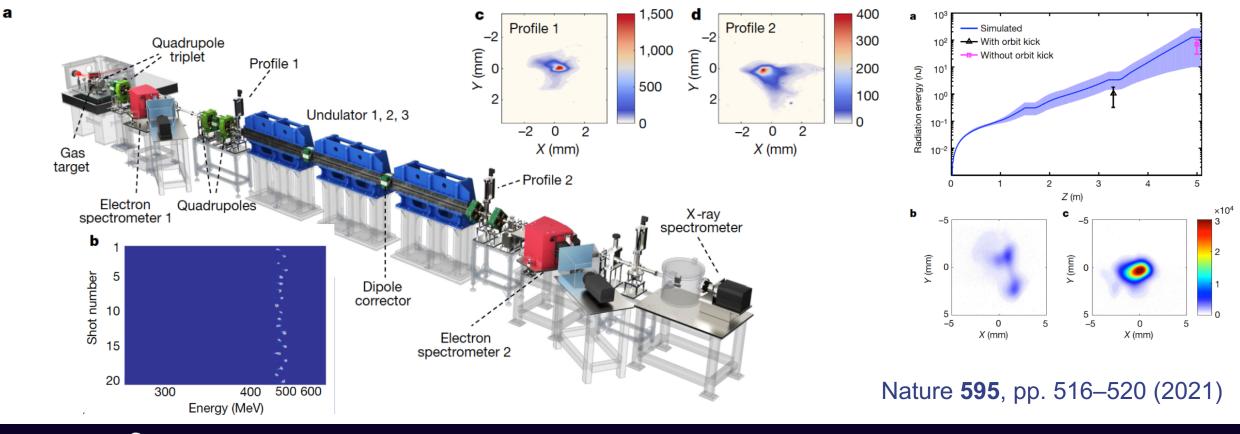

Student Tutorials 5,6 May




Plasma vs Convetional Focusing

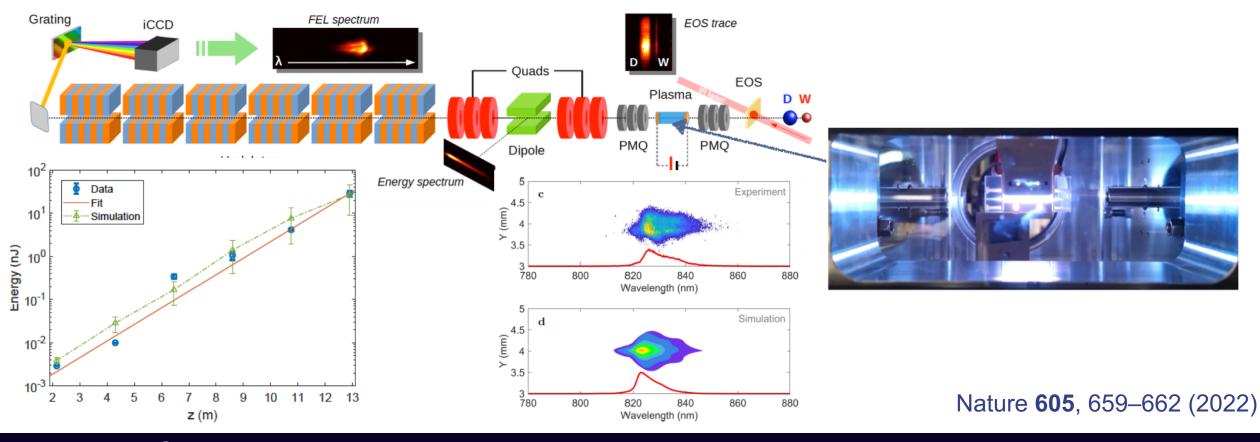
Single Quadrupole Magnet

Student Tutorials 5,6 May

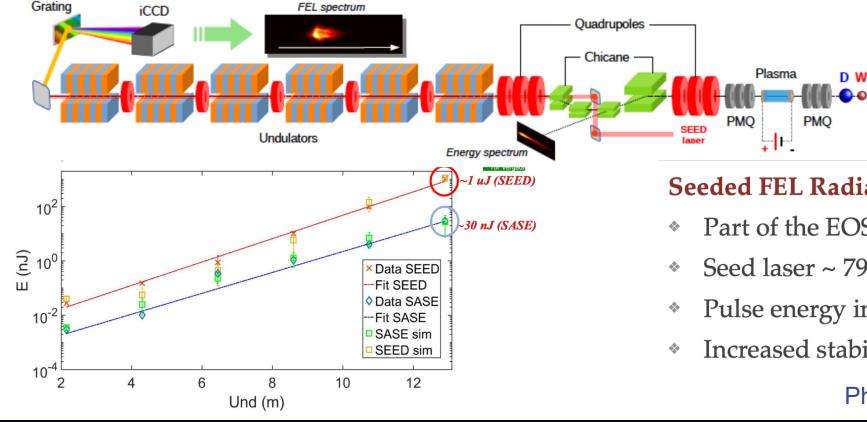

Solving Beam Quality Issues

- Several key challenges facing plasma-based facility operation under control
 - stabilization and control of the acceleration process (R. Pompili et al., Energy spread minimization in a beamdriven plasma wakefield accelerator, Nat. Physics 17, no. 4, pp. 499-503, 2021; Ferran-Pousa et al., PRL 123, 054801, 2019)
 - energy spread mitigation, normalized emittance preservation, overall stability gain
- Improvements still needed to guarantee continuous operation
 - sub-percent to sub-per-mille energy spread and **mm mrad to sub-mm mrad emittances**
 - increase of the repetition rate from a few hertz to kilohertz (R. D Arcy et al., Recovery time of a plasma-wakefield accelerator, Nature 603, pp. 58–62, 2022)
 - improvement of shot-to-shot stability

First SASE FEL lasing from a laser-driven plasma accelerator at SIOM (Shangai)



Student Tutorials 5,6 May

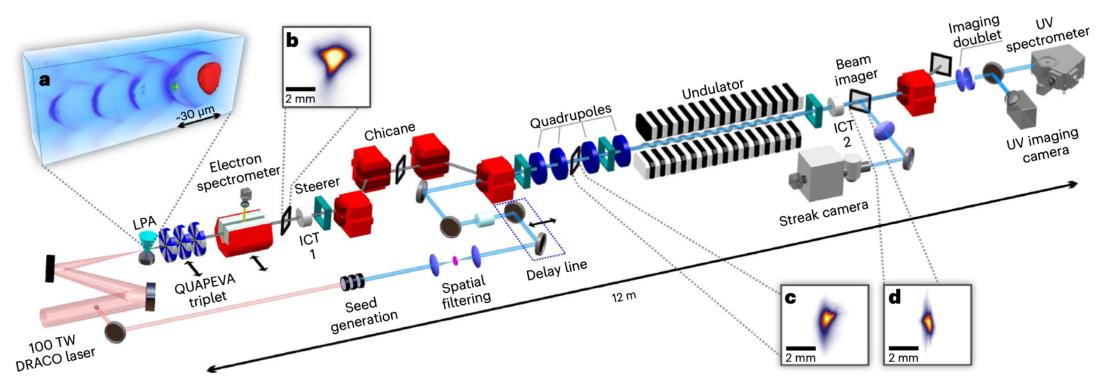

First SASE FEL lasing from a beam-driven plasma accelerator at SPARC_LAB (INFN, Frascati)

First Seeded FEL lasing from a beam-driven plasma accelerator at **SPARC LAB** (INFN, Frascati)

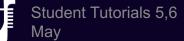
E. Chiadroni

Seeded FEL Radiation

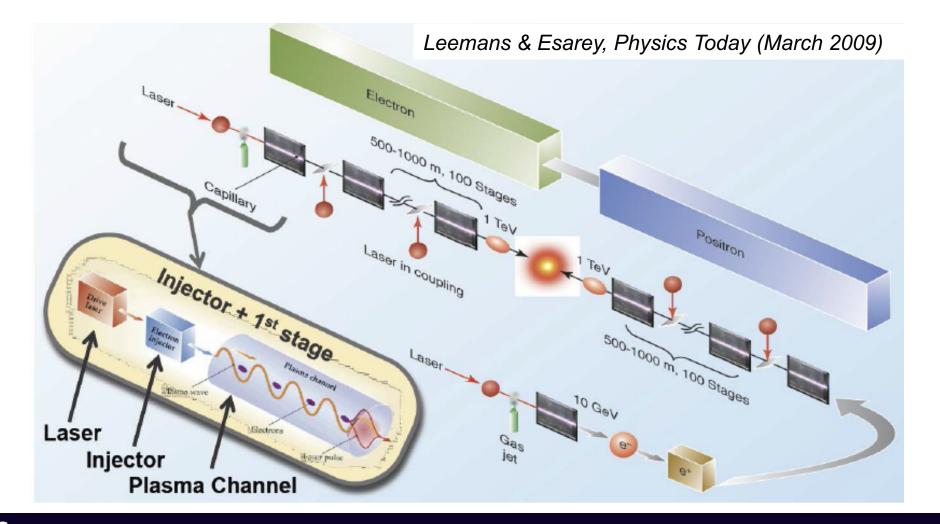
- Part of the EOS laser used as seed
- Seed laser ~ 795 nm, FEL peak 827 nm
- Pulse energy increase from 30 nJ up to 1 μ m
- Increased stability of emitted radiation


Phys. Rev. Lett. **129**, 234801 (2022)

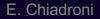
Student Tutorials 5.6


May

First Lasing of the COXINEL Seeded FEL driven by the HZDR Laser Plasma Accelerator (Dresden)

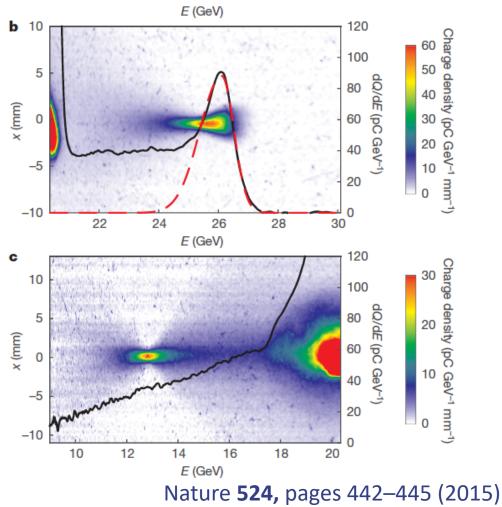


Nature Photonics 17, 150–156 (2023)

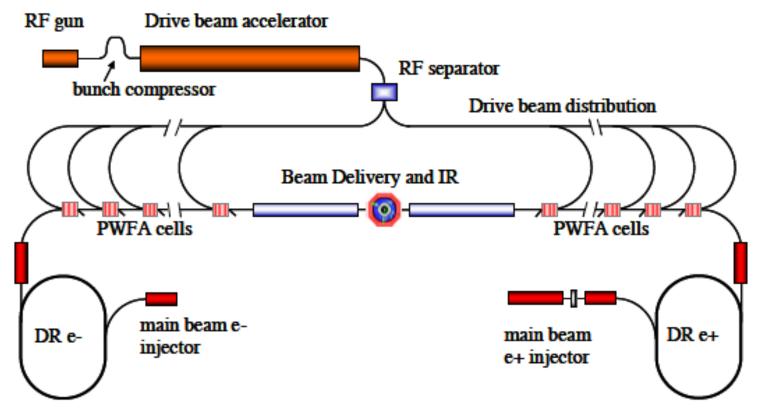


LWFA-based Linear Collider

Student Tutorials 5,6 May



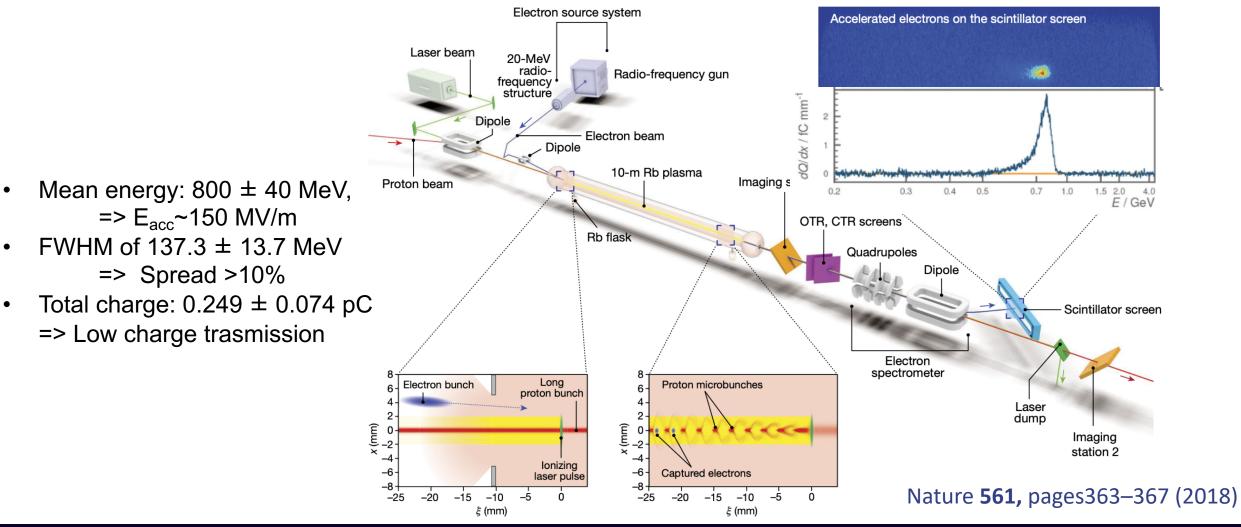
Acceleration of Positrons in Plasma Wakefield


Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield

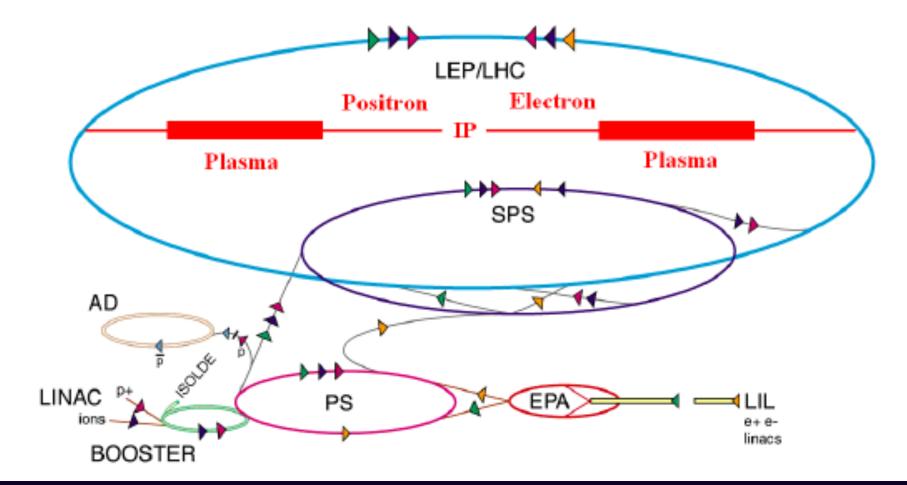
S. Corde^{1,2}, E. Adli^{1,3}, J. M. Allen¹, W. An^{4,5}, C. I. Clarke¹, C. E. Clayton⁴, J. P. Delahaye¹, J. Frederico¹, S. Gessner¹, S. Z. Green¹, M. J. Hogan¹, C. Joshi⁴, N. Lipkowitz¹, M. Litos¹, W. Lu⁶, K. A. Marsh⁴, W. B. Mori^{4,5}, M. Schmeltz¹, N. Vafaei-Najafabadi⁴, D. Walz¹, V. Yakimenko¹ & G. Yocky¹

PWFA-based Linear Collider

CONCEPTUAL DESIGN OF THE DRIVE BEAM FOR A PWFA-LC*


S. Pei[#], M. J. Hogan, T. O. Raubenheimer, A. Seryi, SLAC, CA 94025, U.S.A. H. H. Braun, R. Corsini, J. P. Delahaye, CERN, Geneva

Student Tutorials 5,6 May


Proton-driven PWFA: AWAKE

Idea of a Linear Collider based on a Modulated p+ driven PWFA

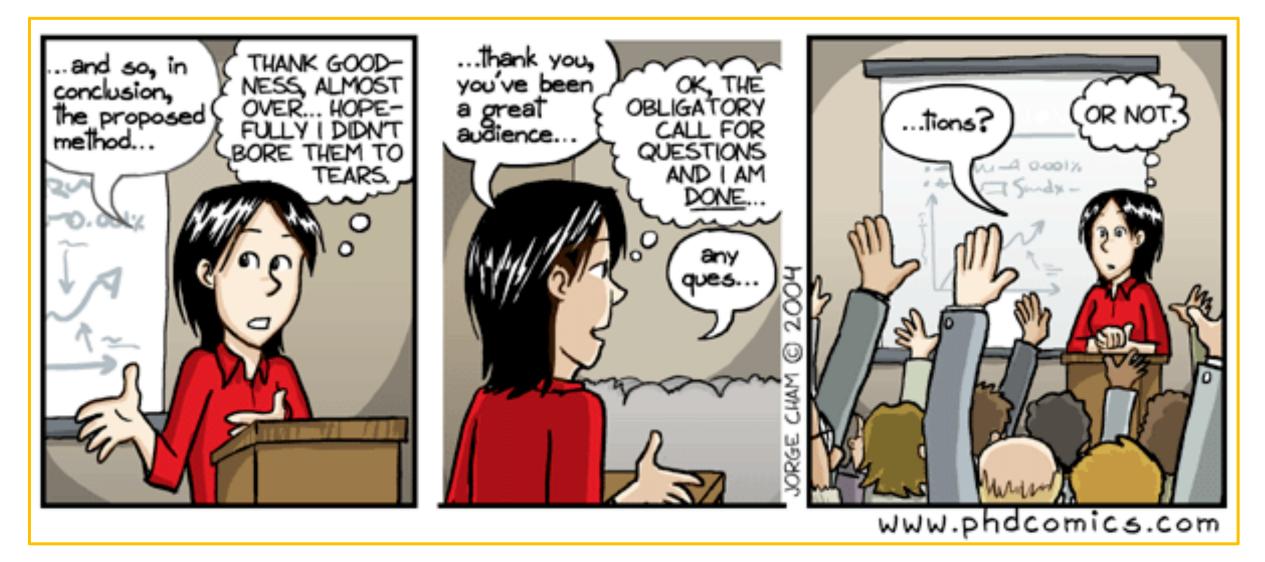
Student Tutorials 5,6 May

Conclusions

- Plasma-based acceleration techniques have demonstrated accelerating gradients up to 3 orders of magnitudes beyond presently used RF technologies
- Plasma-based acceleration techniques have provided solid feasibility proofs of FEL lasing under different configurations
 - Successful efforts on improving beam quality
- The R&D now concentrates on **beam stability, staging and continuous operation**, as necessary steps towards the realization of compact plasma-based accelerator facilities
 - A major milestone is an operational, 1 GeV compact accelerator
 - Challenges in high repetition rate
- Plasma-based, ultra-high gradient accelerators therefore open the realistic vision of very compact accelerators for scientific, commercial and medical applications

MC3 – Novel Particle Sources and Acceleration Techniques at IPAC23

- Towards COXINEL Seeded FEL Using Laser Plasma Accelerator at HZDR Marie Emmanuelle Couprie, SOLEIL
- EuPRAXIA and its Italian Construction Project Massimo Ferrario, INFN
- Laser-Plasma Acceleration beyond the Diffraction and Dephasing Limits Cedric Thaury, Laboratoire d'Optique Appliquée
- Fabrication and testing of corrugated Waveguides for a Collinear Wakefield Accelerator – Alexander Zholents, Argonne National Laboratory


References

- Tajima & Dawson, Phys. Rev. Lett. **43**, 267 (1979)
- Esarey, Schroeder, Leemans, Rev. Mod. Phys. 81, 1229 (2009)
- ... and papers in the slides

Thank You for the attention!

Student Tutorials 5,6 May

