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Static properties of matter

Static picture of a macro-molecule

Need light !

Required properties

- Short wavelength (X-ray)

- High energy per pulse

- Ultra-short pulse (few femtoseconds)

- Coherence

t=-2fs {=2fs t=51s t=10fs t=—20fs t=50fs






Dynamical properties of matter

Dynamics of a molecular, atomic or electronic process

Courtesy of C. Vozzi
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Required properties

- Ultra-short pulses (few femtoseconds)

- Monochromaticity
- Defined polarization

- Stability and reproducibility



Want list

In order to be suited for the study of both static and dynamical matter properties, a

light source should produce pulses with the following properties:

- Short-wavelength (X-rays)

- High-energy

- Ultra-short (few femtoseconds, or less)
- Coherence

- Monochromaticity

- Tunabilty in wavelength

- Defined polarization

- Stability and reproducibility



Motivation

In the the IR/UV spectral region, the large majority of previously mentioned

properties can be obtained by means of conventional table-top lasers
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Motivation

In the the IR/UV spectral region, the large majority of previously mentioned

properties can be obtained by means of conventional table-top lasers

However, in the VUV/X-ray spectral domain only light sources based on

“free” accelerated electrons are able to meet all requirement

During this lecture, we will review the principle, the challenges and the
perspectives of the light sources built with the aim of generating radiation
with laser-like properties in the VUV/X-ray spectral domain, i.e.

free-electron lasers




Outline

- From synchrotron radiation to free-electron lasers (FEL’s)

- Basic principles of FELs

- Different schemes for producing FEL light

- Properties of FEL radiation



Synchrotron
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Spectrum
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Spectrum
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Undulator’s spectral properties
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Radiated power proportional to
the number of electrons

Incoherence!



A question of coherence...

Incoherent emission
(Synchrotron radiation)

Radiated power

Radiation cycles

Radiated power
linear with electron current

Radiated power
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Radiation cycles



Temporal structure

Streak-camera image
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: . About 30 ps
Time structure of synchrotron radiation is a - P

“replica” of that of the electron bunch




Synchrotron radiation

Tunability: Broad (between IR and X-rays) - power stability

- spectral stability
Shot-to-shot reproducibility: Very good =>
- pointing stability

Polarization: Fully adjustable - low temporal jitter

Repetition rate: hundreds of MHz

Peak brightness: = 10%° ph/s/0.1%BW/mm>2/mrad? (at 10 keV)

Pulse duration: tens of picoseconds

Natural spectral resolution: = few percent

Coherence: good transverse, poor longitudinal



Peak brightness
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Synchrotron radiation

Tunability: Broad (between IR and X-rays) - power stability

- spectral stability
Shot-to-shot reproducibility: Very good =>
- pointing stability

Polarization: Fully adjustable - low temporal jitter

Repetition rate: hundreds of MHz

Peak brightness: = 102> ph/s/0.1%BW/mm?2/mrad? (at 10 keV)

Pulse duration: tens of picoseconds

Natural spectral resolution: = few percent

Coherence: good transverse, poor longitudinal



A question of coherence...

Incoherent emission Coherent emission
(Synchrotron radiation)
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Radiated power

A qguestion of coherence...

Incoherent emission Coherent emission

(Synchrotron radiation)

Radiated power
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Radiated power

A qguestion of coherence...

Incoherent emission Coherent emission

Radiated power

(Synchrotron radiation) (Free electron laser)
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Fundamentals of FEL’ s



FEL basic ingredients

Relativistic electron beam

Electromagnetic field co-propagating with the electron beam and getting amplified

to the detriment of electrons’ kinetic energy

/\f%_)



Light amplification: resonance condition

Electrons move slower than the co-propagating electromagnetic wave (slippage)

Resonance condition:
The slippage between the electromagnetic wave and a given electron,

while the electron moves forward by one undulator period (A,),

must be equal to the field wavelength A.

I BE

When this happens, the relative phase between the radiation emitted by the electron and the co-

propagating field remains constant (constructive interference)

Resonance condition

] A, = A (14 K?)

2ny?




Theoretical framework

Evolution of electron’s momentum and energy:

S 6]

g E,B
electric and magnetic fields
of the co-propagating wave
d (gm 2)_ .
Evolution of the co-propagating wave (1D)
Z vector potential
2q° 1 g°0- 4
gﬂ P 2 .A(z t) = - 'DJ (z,1)
Z ¢ g ¢ J . | electrons’ transverse current
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Theoretical framework

phase of the j-th electron in the
combined “ponderomotive”
(radiation + undulator) field

Qj energy of the j-th electron

g resonance energy
r

Under some approximations the previous equations can be reduced to

[y

|
Tdp,

Bunching

= —@exp qu]+ C'C}

1 8
b=—aexp(-iqg.
Nfil p(-ig;)

R. Bonifacio et al. Nuovo Cimento, 13 (1990)

N: electrons’ number




Bunching as source term

electrons bunching =0
Initial condition: \
- weak electromagnetic field 2200, o220, 9 >22

- electrons randomly distributed in phase
electromagnetic field

bunching >0

Electrons start bunching on a A scale
and the wave is amplified

— A —




Self-amplified spontaneous emission

100

Spontaneous emission
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Pictures from: www-ssrl.slac.stanford.edu/Icls/glossary.html



http://www-ssrl.slac.stanford.edu/lcls/glossary.html

Self-amplified spontaneous emission
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Self-amplified spontaneous emission
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Bunching evolution
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Self-amplified spontaneous emission (SASE)

10%0% e X-ray emission

_ * QOutput power: several of GW
108}
I e Pulse duration: tens of fs
e Spectral bandwidth: 1073

* High degree of transverse coherence

Average Power (W)
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* Limited longitudinal coherence
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SASE spectral and temporal performance
(FLASH FEL, Hamburg, Germany)

Spectral profile

Temporal profile

Intensity (a.u.)
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W. Ackermann et al., Nature, 2007
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How to overcome SASE Iimits?

Use an external coherent seeding signal
(instead of spontaneous emission)
to generate electron bunching

!

Seeded High-Gain Harmonic Generation (HGHG)



Seeded harmonic generation: the principle
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Seeded harmonic generation: the principle
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Seeded harmonic generation: the principle

e- beam from the Linac
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Seeded harmonic generation: the principle

e- beam from the Linac

Coherent emission
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Spectral bandwidth

FERMI FEL operated in SASE and HGHG mode

SASE

3331.8
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Spectral peak jitter: < 1 part in 10*
Spectral width: 0.1%




Electron beam quality

|
Electron beam parameters
(FERMI FEL, Trieste, Italy)

Charge 800 pC
Peak current 1 kA
Energy 1.5 GeV
Energy spread 150 keV —
Emittance 1 mm mrad _

Need to monitor and control the growth of micro-bunching instability!




FEL wavelength (nm)

Intensity (arb. units)

Micro-bunching instability
(FERMI FEL, Trieste, Italy)

Strong micro-bunching perturbation
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Electron beam quality

|
Electron beam parameters
(FERMI FEL, Trieste, Italy)

Charge 800 pC
Peak current 1 kA
Energy 1.5 GeV
Energy spread 150 keV
Emittance 1 mm mrad
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Conclusions

The use of a high-quality relativistic electron beam of free electrons allows the generation of

laser-like radiation in the X-ray spectral range.

The two main schemes that can be used to generate FEL radiation, that is self-amplified
spontaneous emission (SASE) and high-gain harmonic generation (HGHG), are based on quite
different philosophies: SASE is generally simpler to implement and allows to produce FEL light in
the hard X-ray spectral region; HGHG relies on a more involved architecture, works well in soft X-

ray region (no hard X-rays), but allows to generate fully coherent pulses.



Conclusions

Performance of present FELs around the world (several in Europe, one in USA, one in Japan,

one in Cina), in terms of peak brightness vs photo energy.
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SASE facilities open to users

STANFORD
UNIVERSITY

FLASH LCLS
Wavelength range (fundamental) [nm] 4.1-47 0.12-1.2
Photons per pulse 1012 - 1013 1012 - 1013
Pulse duration (FWHM) [fs] 10-70 70-500
Spectral width (FWHM) 1% 0.1%
Polarization Fixed linear | Fixed linear
Spatial coherence High High
Temporal coherence Limited Limited

Poor Poor

Shot-to-shot reproducibility




The FERMI@Elettra project

— . i ]
Undulator gallery
- ~100 m long




FERMI Layout

Linear accelerator

Gun Laser Heater X-band
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LDM: Low-Density Matter ; DIPROI: Diffraction and PROjection Imaging; EIS: Elastic and Inelastic Scattering



The two FERMI s amplifiers: FEL-1 and FEL-2

FEL-1 is based on a single-stage high-gain harmonic generation scheme.
It will cover the spectral range from ~100 nm to 20nm.

first dispersive
MODA1 .section
1 RAD1

FEL pulse
4.2nm

Seed pulse |
210 nm N
A
— .
Electron bunch
MOD1 |
L4 ‘ . . . to e-beam dump
first dispersive delay line MOD?2 S$econd dispersive
section section

/

FEL-2, will allow to cover the wavelength range from 20 nm to ~4 nm. It will be
based on a double-cascade of high-gain harmonic generation. A magnetic delay
line, placed between the two stages, will allow to implement a “fresh bunch”
technique. Both schemes are flexible enough to allow other FEL configurations.
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Decreasing pulse duration
femto-slicing

A femtosecond laser can be used to create femto-second time
structure on a long electron bunch through energy modulation of an
ultra-short slice of the bunch.

femtosecond . 1
laser pulse x-ray beamline

Ay |

1 mirror L
Gl R L g2 ‘ yd femtosecond x-rays
L bend magnets y

ALS — Berkeley

30 ps electron bunch

~ 107 ph/pulse

Brilliance: 101! ph/s/0.1%BW/mm?2/mrad?

R. W. Schoenlien et al., Science, 2000



