

14th International Particle Accelerator Conference

PAC 23 7 - 12 May 2023 VENICE, ITALY

F

IPAC23

Physics of linear accelerators / colliders

Louis Rinolfi / CERN / ESI-European Scientific Institute The idea is to provide the basic notions in order to follow and understand the various concepts and parameters presented during the IPAC conference.

This is not a course but a tutorial to enter in the attractive world of linear accelerators and (future) linear colliders.

The various applications of these accelerators could be discussed with the questions

Don't hesitate to interrupt the speaker when something is not clear

Physics of linac accelerators/colliders

LIL*: A linear accelerator at CERN

This accelerator was producing and accelerating electrons and positrons up to:

(e⁻) 500 MeV (e⁺) 500 MeV 100 m long

f = 2.99855 GHz

LEP operation: 1989- 2000

LEP = *Large Electron Positron collider*

* LIL = LEP Injector Linac This linac was designed and built by LAL / Orsay

Physics of linac accelerators/colliders

SLC*: A linear collider at **SLAC - USA**

This accelerator was producing electrons and positrons up to: e^- (45.6 GeV) and e^+ (45.6 GeV)

* SLC = Stanford Linear Collider

It was the first and only Linear Collider running with a beam 3.2 km (2 miles) longf = 2.856 GHz

Operation: 1989-1998

SLAC = Stanford Linear Accelerator Center

Physics of linac accelerators/colliders

What is a linear accelerator ?

A <u>Lin</u>ear <u>Ac</u>celerator is a device where charged particles acquire energy moving on a linear path. Such device is called <u>Linac</u>

A Linac should accelerate charged particle beams in controlled conditions: => Generate a flux of particles at precise energy and in a small volume in space.

The beam dynamics will define how to accelerate and how to focus the beam

The main parameters of a Linac are:

- Types of charged particles
- Output energy
- Beam current
- Frequency
- Pulse length
- Repetition rate

A word about some frequency bands used in the world of particle accelerators

Band names	Approx. range of wavelengths λ (cm)	Approx. frequencies f (GHz)
L	30 – 15	1 – 2 GHz
S	15 – 7.5	2 – 4 GHz
С	7.5 – 3.75	4 – 8 GHz
Х	3.75 – 2.4	8 – 12 GHz
К	2.4 – 0.75	12 – 40 GHz

Physics of linac accelerators/colliders

Beam dynamics for a linear accelerator

Physics of linac accelerators/colliders

Different types of linear accelerator

Acceleration of charged particles is based on electric field

Physics of linac accelerators/colliders

Longitudinal beam dynamics and transverse beam dynamics

Electric field for acceleration

Simulation in the longitudinal phase plane

Magnetic field for focusing

Simulation in the transversal phase planes

Physics of linac accelerators/colliders

Main users for "scientific" linacs

The numbers of linacs around the world is estimated to be around 20 000. The scientific linacs (for the research) represent roughly 1 % of this total. Among them, we give, below, only 3 important applications

1) Linacs used as injectors for downstream accelerators (which will increase the energy, in general), for synchrotron light sources, for FEL, ...

2) Linacs used as primary beams on targets European Spallation Source ESS (Lund), Japan-Proton Accelerator Research Complex J-PARC, Spallation Neutron Source SNS (Oak Ridge), SPIRAL 2 (Caen), etc

3) Linacs used as linear colliders See following slides

1) Linacs used as injectors for CERN accelerators

Physics of linac accelerators/colliders

2) Linacs used as high power primary beam

Example: European Spallation Source ESS (Lund):

Beam Power (MW) = Current (A) x Energy (MeV) x Repetition rate (Hz) x Pulse length (s)

ESS parameters:

I = 62.5 mAE = 2 GeV Rep. rate = 14 Hz Pulse length = 2.86 ms Duty cycle (%)

 $P_{beam} = 5 MW$

Physics of linac accelerators/colliders

3) Linacs used as (future) linear colliders

Linac beam dynamics are identical to those of linear accelerators (previous slides) but here one has more beam dynamics related to the damping rings, beam delivery in the interaction point, etc...

Physics of linac accelerators/colliders

From linear accelerators to linear colliders

Physics of linac accelerators/colliders

Why a collider ?

 E_{FT} = Energy of one accelerator used for a fixed target

 E_{C} = Energy of one accelerator used as collider

If we want the same energy, E_{cm} in the center of mass (CM), the energy required for an accelerator working in fixed target is much higher than the energy required for an accelerator working as collider

 $\mathsf{E}_{\mathsf{FT}} = 2 \; \gamma_{\mathsf{C}} \; \mathsf{E}_{\mathsf{C}}$

Example:

Electrons at 500 MeV

 $\Rightarrow \gamma_{c} = E_{c}/E_{0} = 500 / 0.511 \simeq 1000$

E_{FT} = 2 x 1000 x 500 MeV = 1 TeV

 $E_{C} = 500 \text{ MeV}$

hysics of linac ccelerators/colliders

Hadrons versus leptons

In circular colliders

Limited by the dipole field available and the ring size

p [GeV/c] ≈ 0.3 B [T] ρ[m]

hadron collider => frontier of physics

- -discovery machine
- -collisions of quarks
- -not all nucleon energy available in collision

6 quarks

-huge background

Go to higher magnetic fields (=> Superconducting) or/and *large circumferences (=> ten's km)*

lepton collider => precision physics

- -study machine
- -elementary particles collisions
- -well defined CM energy
- -polarization possible

In circular colliders Limited by the synchrotron radiation $W [eV] \approx E^4 [GeV] / \rho[m] (E_0)^4 [GeV]$ \int Go to linear colliders (or heavier particles)

Physics of linac accelerators/colliders

Brief history of high energy linear colliders e⁺ e⁻ (1)

1985: **CLIC = CERN Linear Collider** 30 GHz, normal conducting CERN (Switzerland)

- 1989: **SLC = Stanford Linear Collider** 3 GHz, normal conducting SLAC (California)
- 1995: Six linear colliders studies at high energy, in parallel:

> TESLA	1.3 GHz, superconducting	DESY (Germany)
SBLC (S-Band Linear Collider)	3 GHz, normal conducting	DESY (Germany)
➢ NLC (Next Linear Collider)	11.4 GHz, normal conducting	SLAC (California)
 ➢ JLC (Japan Linear Collider) ⇒ Joint Linear Collider 	11.4 GHz, normal conducting	KEK (Japan)
> VLEPP	14 GHz, normal conducting	Novosibirsk (Russia)
 CLIC (CERN Linear Collider) Compact Linear Collider 	30 GHz, normal conducting	CERN (Switzerland)

Physics of linac accelerators/colliders

Brief history of high energy linear colliders e⁺ e⁻ (2)

- 2004: Decision for a ILC (International Linear Collider) based on TESLA technology => Only two major linear collider studies: ILC (SC RF cavities) and CLIC (NC RF cavities)
- 2007: *Major CLIC changes*: 30 GHz => **12 GHz** and 150 MV/m => **100 MV/m**
- 2012: Publication of Conceptual Design Report for CLIC (12 GHz)
- 2013: Publication of Technical Design Report for ILC (1.3 GHz)
- 2023: Both ILC and CLIC are mature projects: waiting for a decision to be approved

~ 40 years of research and works for future high energy linear colliders

Physics of linac accelerators/colliders

An overview of the required physics in linear colliders

Create beams

- Polarized electron (and polarized positron when possible)

- High quality beam
 - Low emittances
 - Small beam size, small energy spread
- Beam transport
 - Transport small emittances
 - Bunch compressor
- ✤ Acceleration
 - RF cavities (Room temperature)
 - RF cavities (superconducting)
- Bring to collision at Interaction Point (IP)
 - Nanometers beams
- After collisions
 - Radiation issues

Physics of linac accelerators/colliders

Damping rings

Sources

RTML (Return To Main Linac)

Main Linac

Final focus

Beam dumps

1. Introduction Just look Table 1 to see the 2 fundamental parameters

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e^+e^- collider under development by the CLIC accelerator collaboration [1]. It is the only mature multi-TeV lepton collider proposal. CLIC uses a novel two-beam acceleration technique, with normal-conducting accelerating structures operating in the range of 70–100 MV/m. Detailed studies of the physics potential and detector for CLIC, and R&D on detector technologies, are carried out by the CLIC detector and physics (CLICdp) collaboration [1].

The CLIC Conceptual Design Report (CDR) was published in 2012 [2–4]. The main focus of the CDR was to demonstrate the feasibility of the CLIC accelerator at 3 TeV and to confirm that high-precision physics measurements can be performed in the presence of particles from beam-induced background. Following the completion of the CDR, detailed studies on Higgs and top-quark physics, with particular focus on the first energy stage, concluded that the optimal centre-of-mass energy for the CLIC first stage is $\sqrt{s} = 380$ GeV.

As a result, a comprehensive optimisation study of the CLIC accelerator complex was performed, by scanning the full parameter space for the accelerating structures, and by using the luminosity, cost, and energy consumption as a gauge for operation at 380 GeV and 3 TeV. The results led to optimised accelerator design parameters for the proposed staging scenario, with operation at 380 GeV, 1.5 TeV and 3 TeV [5]. The recently updated luminosities for each stage are given in Table 1. CLIC provides $\pm 80\%$ longitudinal electron polarisation and proposes a sharing between the two polarisation states at each energy stage for optimal physics reach [6].

Center-of-mass energy

The total mass of the system is often called the center-of-mass energy and its square is usually denoted by "s".

The invariance of this quantity is very useful

$$E_{cm} = \sqrt{s}$$
Unit: eV
"electronVolt"
1 eV = 1,6 10⁻¹⁹ J

 $1 \text{ TeV} = 10^{12} \text{ eV}$

For a linear collider

 F_{fill} = Filling factor of the Linac; L_{linac} = Length of the linac; E_{RF} = accelerating electric field

Physics of linac accelerators/colliders

Luminosity

The number of events, N_{exp} , is the product of the cross-section of interest, σ_{exp} , and the time integral over the instantaneous luminosity \mathcal{L}

Unit:

Integrated luminosity over the time uses a conventional unit called inverse "barn" 1 barn = 10^{-28} m² = 10⁻²⁴ cm² and 1 ab⁻¹ = 10⁴⁶ m⁻² = 10⁴² cm⁻² (inverse attobarn)

Physics of linac accelerators/colliders

Basic expression for instantaneous Luminosity

 n_b = number of bunches; N = number of particles per bunch; f_{rep} = frequency repetition rate; σ_x , σ_y = rms transverse beam sizes;

Physics of linac accelerators/colliders

Luminosity challenges

Future high energy linear colliders are based on experience:

- SLC (Stanford Linear Collider)
- FELs (Free Electron Lasers)
- Lights sources (Many radiation synchrotron machines in the world)
- **BUT** the performance goal are more ambitious:
- beam size of nm scale,
- beam emittances extremely small,
- stabilization,
- alignments,
- energy management,.....

International Workshop on Future Linear Colliders

15-19 May 2023

Overview

- Scientific Programme
- Call for Abstracts
- Registration
- Participant List
- Program Organizing Committee
- Local Organizing Committee

stanford.edu/event/7467/ \C

Physics of linac accelerators/colliders

Acknowledgments

(slides and discussions)

Special thanks to Elias Métral for very fruitful discussions

D. Alesini, U. Amaldi, R. Assmann, U. Bassler, P. Burrows, R. Corsini, G. D'Auria, M. Esrhaqi, J.B. Lallement, A. Latina, P. Lebrun, S. Michizono, T. Omori, D. Schulte, S. Stapnes, M. Vretenar, M. Yoshioka, F. Zimmermann

Physics of linac accelerators/colliders

A citation as conclusion

In the book of U. Amaldi

"Viki" Wiesskopf, Director General of CERN 1961-1965 wrote:

"There are three kinds of physicists, namely the machine builders, the experimental physicists, and the theoretical physicists.

If we compare this with the discovery of America, the machine builders correspond to captains and ship builders who really developed the techniques at that time.

The experimentalists were those fellows on the ships who sailed to the other side of the world and then landed on the new islands and wrote down what they saw.

The theoretical physicists are those who stayed behind in Madrid and told Columbus that he was going to land in India."

You are the machine builders

.... for future linear accelerators and high energy colliders

Thank you for your attention

Physics of linac accelerators/colliders

Appendix

If you wish to discuss some points:

louis.rinolfi @ cern.ch

Physics of linac accelerators/colliders

Electric field in a cavity

We assume that the solution of the wave equation in a bounded medium can be written as:

One should concentrate the RF power on the beam path in the most efficient way. Tailor development of the function of space E(x, y, z) allows choosing the appropriate cavity geometry

Some cavity parameters:

- 1. Average electric field
- 2. Shunt impedance
- 3. Quality factor
- 4. Filling time
- 5. Transit time factor

Physics of linac accelerators/colliders

Average electric field

Average electric field: E_0 is measured in V/m.

Average electric field on <u>beam axis</u> in <u>the direction of the beam propagation</u> at a given moment in <u>time</u> <u>when E(t) is maximum</u>.

$$E(x, y, z, t) = E(x, y, z). e^{-j\omega t}$$

Integration done on z axis: x=0, y=0, z from 0 to L (cavity length)

$$E_0 = \frac{1}{L} \int_{0}^{L} E(0,0,z) dz$$

Measure how much field is available for acceleration Depends on the cavity shape, resonating mode and frequency

Shunt impedance

Shunt impedance (per unit of length): Z measured in Ω/m .

Defines the ratio of the average electric field squared (E_0^2) to the power (P) per unit of length (L) dissipated on the walls surface.

$$Z = E_0^2 \cdot \frac{L}{P}$$

Measure how well the RF power is concentrated in the useful region.

It is independent on the field level and cavity length. Depends on cavity mode and geometry.

Physics of linac accelerators/colliders

Quality factor

Quality factor: Q dimension-less.

Defines the ratio of the stored energy (U) to the power lost on the wall (P) in one RF cycle (f = frequency).

$$Q = \frac{2\pi \cdot f}{P} \cdot U$$

Q is a function of the geometry and of the surface resistance of the cavity material.

Examples at 700 MHz:

Superconducting (niobium): Q=10¹⁰ (depends on temperature)

Normal conducting (copper): Q=10⁴ (depends on cavity mode)

Filling time

Filling time: t_F measured in seconds

Two different definitions for traveling wave (TW) structures or standing wave (SW) structures.

• For TW: Time needed for the electromagnetic energy to fill the cavity of length L

• For SW: Time it takes for the field to decrease by 1/e after the cavity has been filled.

$$E_F = \frac{2Q}{\omega}$$
 How fast the stored energy is dissipated to the wall

Physics of linac accelerators/colliders

Transit time factor

Transit time factor: T dimension-less.

Defines the ratio of the energy gained in the time varying RF field to that in a DC field. T is a measure of the reduction in energy gain caused by the sinusoidal time variation of the field in the gap.

Physics of linac accelerators/colliders

Longitudinal phase space

Energy gain for the synchronous particle Energy gain for a particle with phase ϕ

$$\Delta W_{s} = qE_{0}LT\cos(\phi_{s})$$
$$\Delta W = qE_{0}LT\cos(\phi)$$

 E_o electric field L cavity length T transit time factor ϕ_s phase of the synchronous particle

Physics of linac accelerators/colliders

Transverse phase space

The ellipse equation used in beam dynamics is:

$$\alpha x^2 + 2\alpha x x' + \beta (x')^2 = \varepsilon$$

 $\alpha,\,\beta,\,\gamma$ are the Twiss parameters

 $\pmb{\epsilon}$ is called emittance of the beam. It's equal to the ellipse area divided by π

F and D are focusing and defocusing quadrupoles respectively

Physics of linac accelerators/colliders

Scientific Linacs in the world

http://linac96.web.cern.ch/Compendium/COMPENDI.PDF

A complete review was made for the Linac Conference in 1996

Summary

This compendium comprises 176 scientific linacs distributed over 3 continents :

Americas	:	61
Asia	:	37
Europe	:	78

Altogether the breakdown for the types of particles is the following :

Electrons	:	111
Positrons	:	12
Protons/H-	:	23
Ions	:	30

Physics of linac accelerators/colliders

Another expression of luminosity for colliders

Physics of linac accelerators/colliders

Luminosity

The unit of the cross-section (σ_{event}) is the barn: $\Rightarrow 1 \text{ barn} = 10^{-28} \text{ m}^2 = 10^{-24} \text{ cm}^2$

$$\Rightarrow 1 \text{ barn}^{-1} = 10^{28} \text{ m}^{-2} = 10^{24} \text{ cm}^{-2}$$

$$\Rightarrow 1 \mu \text{b}^{-1} = 10^{34} \text{ m}^{-2} = 10^{30} \text{ cm}^{-2}$$

$$\Rightarrow 1 \text{ pb}^{-1} = 10^{40} \text{ m}^{-2} = 10^{36} \text{ cm}^{-2}$$

$$\Rightarrow 1 \text{ fb}^{-1} = 10^{43} \text{ m}^{-2} = 10^{39} \text{ cm}^{-2}$$

$$\Rightarrow 1 \text{ ab}^{-1} = 10^{46} \text{ m}^{-2} = 10^{42} \text{ cm}^{-2}$$

The inverse femtobarn (fb⁻¹) is the unit typically used to measure the number of <u>particle collision events</u> per femtobarn of <u>target cross-section</u>, and is the conventional unit for time-integrated <u>luminosity</u>. Thus if a detector has accumulated 100 fb⁻¹ of integrated luminosity, one expects to find 100 events per femtobarn of cross-section within these data.

Physics of linac accelerators/colliders

Luminosity at SLC

SLC collider ran over the last 2 years (1997-1998) with the following parameters:

For ~ 28 10⁶ seconds, the instantaneous luminosity was: 2×10³⁰ cm⁻²·s⁻¹ = 2 μ b⁻¹·s⁻¹ = 2.10⁻⁶ pb⁻¹·s⁻¹,

 \Rightarrow integrated luminosity of 2x10⁻⁶x28x10⁶ pb⁻¹ = 56 pb⁻¹ = 0.056 fb⁻¹ during this period.

 \Rightarrow multiplied by the cross-section of σ_{event} , then a dimensionless number is obtained which is the number of expected scattering events

 \Rightarrow It's found 350 000 Zo collected over two years

Physics of linac accelerators/colliders

Energy challenge: the electric field for normal conducting cavities

Break Down Rate (BDR) means pulses lost because of vacuum arcing in the structure.

Many tests done by CLIC study within a large international collaboration to understand the physics of breakdown phenomena.

RF cavity: X-band, 12 GHz

100 MV/m gradient have been demonstrated 150 MV/m have been achieved with a lot of BDR

High frequencies means smaller dimensions. The power scales as the square of the gradient => High gradient means higher power consumption.

Physics of linac accelerators/colliders

Energy challenge: the electric field for superconducting cavities

31 MV/m gradient have been demonstrated 60 to 90 MV/m is a long-term goal

RF cavity: L-band, 1.3 GHz

Various techniques investigated:

Nitrogen infusion process (FNAL) => high Q operation, gradients ~45 MV/m

Coating of Nb with a thin layer of Nb_3Sn => allows operation at larger *T*, improved cryogenic efficiency

Physics of linac accelerators/colliders

Which collider ?

Physics of linac accelerators/colliders

46 IPAC23

CLIC at **CERN**

Physics of linac accelerators/colliders

CLIC 3 TeV and Two beam concept

IPAC 23

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Total integrated luminosity per year	$\mathscr{L}_{\mathrm{int}}$	fb ⁻¹	180	444	708
Main linac tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	10^{9}	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x / σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_v$	nm	900/20	660/20	660/20
Final RMS energy spread	, ,	%	0.35	0.35	0.35
Crossing angle (at IP)		mrad	16.5	20	20

CLIC parameters

Physics of linac accelerators/colliders

Another challenge: the beam size

Vertical spot size at IP (Interaction Point) is 1 nm (for CLIC)

Stability requirements for a 2% loss in luminosity

Magnet	Horizontal jitter	Vertical jitter		
Linac (2600 quads)	14 nm	1.3 nm		
Final Focus (2 quads) QD0	4 nm	0.15 nm		

H₂O molecule

Physics of linac accelerators/colliders

ILC layout

8370 superconducting cavities in 930 cryo-modules Gradient 31.5 MV/m RF Frequency 1.3 GHz Beam polarization: e- 80%, e+ 30%

Physics of linac accelerators/colliders

ILC parameters

October 2020

			Z-Pole [4]			Higgs [2,5]		500GeV [1*]		TeV [1*]
			Baseline	Lum. Up	Baseline	Lum. Up	L Up.10Hz	Baseline	Lum. Up	case B
Center-of-Mass Energy	Eou	GeV	91.2	91.2	250	250	250	500	500	1000
Beam Energy	Ebeam	GeV	45.6	45.6	125	125	125	250	250	500
Collision rate	f _{col}	Hz	3.7	3.7	5	5	10	5	5	4
Pluse interval in electron main linac		ms	135	135	200	200	100	200	200	200
Number of bunches	nb		1312	2625	1312	2625	2625	1312	2625	2450
Bunch population	N	10 ¹⁰	2	2	2	2	2	2	2	1.737
Bunch separation	Δt_b	ns	554	554	554	366	366	554	366	366
Beam current		mA	5.79	5.79	5.79	8.75	8.75	5.79	8.75	7.60
Average beam power at IP (2 beams)	PB	MW	1.42	2.84	5.26	10.5	21.0	10.5	21.0	27.3
RMS bunch length at ML & IP	σz	mm	0.41	0.41	0.30	0.30	0.30	0.30	0.30	0.225
Emittance at IP (x)	γe* _×	μm	6.2	6.2	5.0	5.0	5.0	10.0	10.0	10.0
Emittance at IP (y)	γe [*] y	nm	48.5	48.5	35.0	35.0	35.0	35.0	35.0	30.0
Beam size at IP (x)	σ^*_{\times}	μm	1.118	1.118	0.515	0.515	0.515	0.474	0.474	0.335
Beam size at IP (v)	σ*,	nm	14.56	14.56	7.66	7.66	7.66	5.86	5.86	2.66
_uminosity	L	10 ³⁴ /cm ² /s	0.205	0.410	1.35	2.70	5.40	1.79	3.60	5.11
Luminosity enhancement factor	HD		2.16	2.16	2.55	2.55	2.55	2.38	2.39	1.93
Luminosity at top 1%	L0.01/L	%	99.0	99.0	74	74	74	58	58	45
Number of beamstrahlung photons	ne		0.841	0.841	1.91	1.91	1.91	1.82	1.82	2.05
Beamstrahlung energy loss	δвя	%	0.157	0.157	2.62	2.62	2.62	4.5	4.5	10.5
AC power [6]	Psite	MW			111	138	198	173	215	300
Site length	Lsite	km	20.5	20.5	20.5	20.5	20.5	31	31	40

Physics of linac accelerators/colliders

Another challenge: the e⁺ source

Design a Super-Conducting helical undulator to produce polarized photons The same main electron beam is used for the Physics and for the e⁺ production, for ILC

The main electron beam go through the helical undulator => polarized photons

The photon beam is sent onto a target to produce e⁺e⁻ pairs.

A e^+ beam polarization (> 30 %) can be obtained.

Physics of linac accelerators/colliders

The crucial energy management

Summary of electric power situation in Tohoku

- Power generation facility capacity: Total 27.5GW
 - Total renewable power: 32 %
 - ILC peak power: 0.5 % of total capacity
- Electricity sales volume in 2017: 72 TWh/year
 - Total sustainable power: 22 %
 - Nuclear power: 0 %
 - ILC power demand: 1 % of total sales

Physics of linac accelerators/colliders

CLIC accelerating structure

Outside

f = 11.994 GHz X-band E = 100 MV/m Input power ≈50 MW Pulse length ≈240 ns Repetition rate 50 Hz

Inside

IPAC

CLIC publications

Conceptual Design Report CDR 2012

https://cds.cern.ch/record/1500095 https://cds.cern.ch/record/1425915 https://cds.cern.ch/record/1475225

Updated Staging Baseline 2016

Vol. 4 (2018): The Compact Linear Collider (CLIC) – Project Implementation Plan

The project status has been presented in a series of Yellow Reports <u>http://clic.cern/european-strategy</u>

The CLIC project: updated April 2022

https://arxiv.org/abs/2203.09186

Physics of linac accelerators/colliders

ILC publications

From Design to Reality

Ursula Bassler @ Granada open symposium – May

Louis Rinoff¹

Proposals of lepton colliders

Snowmass'2021 AF-EF-TF: Collider Implementation Task Force Report

Report of the Snowmass'21 Collider Implementation Task Force <u>https://arxiv.org/pdf/2208.06030.pdf</u>

Black lines represent yearly production rates of important processes related to elementary particles: Z, W, H, t quark, ...

> Present R&D : Design and built a Higgs factory

=> A very large range of physics studies for future colliders

accelerators/colliders

Figure-of-merit for peak luminosity and integrated luminosity for future colliders

Physics of linac accelerators/colliders

IPAC

Colliders: 16 Options at Snowmass 2021

Physics of linac accelerators/colliders

Today vision

For future high energy colliders: four essential parameters:
1) increase the luminosity
2) increase energy
3) reduce the power consumption
4) reduce the cost

- as much as possible

Higgs factory: what is the best implementation ? Linear vs circular.

What is the best type of particles: e^{-}/e^{+} ? p / (pbar) ? $\mu^{-}\mu^{+}$? Plasma ?, ... ?

What is the best path: high intensity frontier? high-energy frontier?

Energy management for future linear colliders is crucial: => energy efficiency and sustainability

