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Contents:

• The basics of (modern) accelerator rings

− From Lorentz force to Hill’s equation

• Basic concepts in Particle Accelerators

− Closed Orbit, Chromaticity, Dispersion

• Rings as particle colliders

Remarks:

• It is assumed that particles have large momentum and the ring is large.

• Only single particle dynamics (no collective effects).

• Not covered

– Synchrotron Radiation.

– Longitudinal dynamics.

– ...and much more!
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The very basic concepts

Charged particles in EM fields experience the Lorentz force:

dp⃗

p
= F⃗ = qE⃗ + qv⃗ × B⃗

• The magnetic force is always perpendicular to the velocity: it changes the trajectory

direction.

• The electric field may deflect and/or change the momentum.

http://www.mechanik.tu-darmstadt.de


4/51 P□i?⊖⟲⟳≫≪><

Building blocks of a high energy accelerator:

• Dipole magnets (uniform field)

define the design trajectory,

closed in a storage ring.

• “Normal” quadrupole magnets

aligned along the design trajec-

tory

Bx = gy By = gx

bend horizontally particles with

horizontal offset and vertically

those with vertical offset:

provide transverse focusing.

• RF cavities with electric

field parallel to the velocity

(de)accelerate and/or provide

longitudinal focusing.
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A quadrupole and a dipole.

9 cell SC RF cavity
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Fermilab IOTA ring: a 40 m long test facility.

dipole

cavity

quads
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From basic concepts to formulas

It is convenient to describe the particle mo-

tion in a right-handed rectangular system

(τ̂ , êx, êy) which moves along the nominal

trajectory. In such a frame and using the

path length s rather than the time t the

motion is described by Hill’s equations.

Steps:

• Start with the equations of motion under Lorentz force in the laboratory coordinates

system
d

dt

[
m

dr⃗

dt

]
= e

dr⃗

dt
× B⃗
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• Use of the local coordinate system attached to

the reference orbit (assumed here for simplicity

planar and lying in the horizontal plane):
τ̂ tangent to the orbit

êy ⊥ to the plane of the orbit (constant)

êx ≡ êy × τ̂

• Use Frenet formulas d
ds
êx = τ̂ 1

ρ

d
ds
τ̂ = −êx

1
ρ

• Express particle position in terms of the reference particle position vector r⃗0

r⃗(s, x, y) ≡ r⃗0(s) + dr⃗ = r⃗0(s) + x(s)êx + y(s)êy
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• Use s (distance along the reference trajectory)

instead of time

d

dt
=

dℓ

dt

d

dℓ
=

dℓ

dt

ds

dℓ

d

ds

with, for small x′ and y′,

dl

dt
≃ vs and

dℓ

ds
≃ 1 + x/ρ

ρ

x

ds dldΘ

• Linearize fields in the local frame {τ̂ , êx, êy}
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Linearized equations of motion for the generic particle in the local frame attached to

the reference trajectory write

x′′ +
( 1

ρ2
+ K

)
x + Ny + 2Hy′ =

1

ρ

∆p

p
+

e

p
∆By

↖
← dipolar errorsy′′ −Ky + Nx− 2Hx′ =

e

p
∆Bx

with
1

ρ
=

e

p
By ← large ρ for large p

K(s) ≡
e

p

(∂By

∂x

)
x=y=0

and N ≡
1

2

e

p

(∂Bx

∂x
−

∂By

∂y

)
x=y=0

↑ ↑
normal quad skew quad

H ≡
1

2

e

p
Bτ ← solenoid
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• Solenoids are usually present in the experiment detector, their effect is small, often

compensated by anti-solenoids.

– They may be also machine components for rotating the particle spin direction.

• In general skew quadrupoles are introduced for correction purposes and treated in

perturbation theory.

Setting N=H=0 the two equations are uncoupled and, for ∆p=0 and in absence of

dipolar errors, may be re-written in a symmetric form (Hill’s equation)

z′′ + Kzz = 0 with z = x, y

where

Kx ≡
( 1

ρ2
+ K

)
and Ky ≡ −K K(s) ≡

e

p

(∂By

∂x

)
x=y=0��

��↙quad strength

nb: In the following the subscript will be omitted when not needed.

The equations of motion can be derived from the Hamiltonian

H =
1

2

[
p2
x + p2

y + Kxx
2 + Kyy

2
]
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Twiss functions

Assuming it exists, we use the periodic solution, β(s), of

1

2
ββ′′ −

1

4
β′2 + β2K = 1

and define the new variables η and ϕ

η ≡
z
√
β

and ϕ(s) ≡
1

Q

∫ s ds̄

β����↙
large contribution from

small β

The parameter Q is chosen so that

ϕ(C) =
1

Q

∮
ds

β
= 2π → Q =

1

2π

∮
ds

β

We express the derivatives wrt s in terms of the new parameter ϕ

d

ds
=

1

Qβ0

d

dϕ

d2

ds2
=

1

(Qβ0)2
d2

dϕ2
+

d

ds

( 1

Qβ0

) d

dϕ
=

1

(Qβ0)2
d2

dϕ2
−

1

Q2β3
0

dβ0

dϕ

d

dϕ
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The Hill’s equation transforms in the equation of a harmonic oscillator

d2η

dϕ2
+ Q2η = 0

The general solution may be written as

η(ϕ) = A sin (Qϕ + φ)

The betatron tune Q is the number of free oscillations per turn and Q/Trev is the

betatron frequency. Back to x and y coordinates:

z = A
√

βz(s) sin (Qϕ + φ)

z′ =
A
√
β
[cos (Qϕ + φ)− α sin (Qϕ + φ)]

with

α ≡ −
1

2

dβ

ds

• β and ϕ (Twiss functions) are properties of the ring optics;

• A and φ are properties of the particle, depending upon the starting conditions.
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A2, the particle emittance, is a constant of motion.

It is easy to verify that

γz2 + 2αzz′ + βz′2 = A2

with γ ≡ (1 + α2)/β.

This is the equation of an ellipse in

the zz′ plane with area πA2.

The shape depends only upon β(s)

and its derivative, it is the same for

all particles.
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Beam statistical emittance:

ϵrms ≡
√
< z2 >< z′2 > − < zz′ >2 =

1

2
< A2 >

↓
using the expressions for z and z′
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In presence of synchrotron radiation, the balance between quantum excitation (from

photon emission) and damping (from replenishing the lost energy through RF longitu-

dinal electric fields) results in an equilibrium beam emittance.

ϵx =
Cqγ

2
rel

Jx

∮
ds

1

|ρ|3
[γxD

2
x + 2αxDxD

′
x + βxD

′
x]
/∮

ds
1

ρ2

ϵy =
Cq

Jy

∮
ds

βy

|ρ|3
/

∮
ds

1

ρ2
≃ Cq (for a horizontally planar ring)

where

Cq =
55

32
√
3

ℏ
m0c

≃ 3.84× 10−13 m

and, usually, Jx ≃ 1 and Jy= 1. Therefore in general for e± it is ϵy ≪ ϵx.

For p there is only damping from accelerating cavities: emittance decreases with energy.

Normalized emittance: ϵN ≡ γrelβrelϵ.
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The closed orbit

In presence of dipolar error fields e
p
∆B(s) ≡ F (s) it is

d2η

dϕ2
+ Q2η = Q2β3/2F (s(ϕ))

which is a forced oscillator.

The general solution is the sum of the general solution of the homogeneous part and a

particular solution of the inhomogeneous equation.

One can verify that

η(ϕ)co =
Q

2 sinπQ

∫ ϕ+2π

ϕ

dϕ̄f(ϕ̄) cos [Q(π + ϕ− ϕ̄)] =

Q

2 sinπQ

∫ 2π

0

dϕ̄f(ϕ̄) cos [Q(π − |ϕ− ϕ̄|)]

with f(ϕ) ≡ β3/2F (s(ϕ)), is the periodic particular solution.

The closed orbit is obtained by multiplying by
√
β.
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The actual motion of any particle is then described by

z =
√
βη + zco = A

√
β sin (Qϕ + φ) + zco

with (chopping the integral in the sum of discrete distortions)

zco(s) =
1

2 sinπQ

√
β(s)

∑
j

√
βjΘj cos [Q(π − |ϕ(s)− ϕ̄j|)]

Kick → Θj ≡ F∆sj =
e

p
∆Bj∆sj

• Q can’t be an integer number!

• In the linear approximation a closed orbit always exists, it may be out of the vacuum

chamber though...

• The effect of errors at large β-value location is particularly strong.

• For correcting the orbit small dipole correctors are inserted in the lattice.

Their effect on the closed orbit is of course described by the same expression.
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Although today sophisticated methods allow to align the machine components with a

precision in the order of some hundred microns, magnet positioning precision is finite.

The expectation value of the rms closed orbit can be estimated under the assumption

that the number of magnets is large enough

< zrms >=
1

2
√
2| sinπQ|

√
< β >

√
Σi βi Ψ

2
i

where Ψi depends on the kind of error considered. For quadrupole transverse misalign-

ments it is Ψ = (kℓ)iδz
Q
rms and

< zrms >=
1

2
√
2| sinπQ|

√
< β >

√√√√NQ∑
i=1

βi(kℓ)
2
i δzQ

rms

'

&

$

%
↖ amplification factor
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There are some more “discoveries” related to change of variables from (z, s) to (η, ϕ).

For a closed ring, owing to the periodicity, we can expand zco/
√
β ≡ ηco and f(ϕ) ≡

β3/2F (s(ϕ)) in Fourier series

η(ϕ)co = u0 +

+∞∑
p=1

up cos pϕ + vp sin pϕ

f(ϕ) = a0 +

+∞∑
p=1

ap cos pϕ + bp sin pϕ

Inserting back into the equation for η we find the relationship between the expansion

coefficients  up

vp

 =
Q2

Q2 − p2

 ap

bp


Under the assumption that the errors have a white spectrum

• The orbit is most sensitive to the harmonics close to the betatron frequency Q.

• The Fourier expansion of an un-corrected closed orbit will have large values of the

harmonics close to Q.
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Beam Position Monitors are used for measuring the beam transverse position.

The average over many turns gives the closed orbit. Having used ϕ, we see that what

matters is the phase advance, Qϕ (≡ µ), rather than the position s:

• BPMs and correctors should be distributed uniformly around the ring wrt to ϕ.

• As z=
√
βη and A=Θ

√
β, locations with large β are preferred.

Additional BPMs and correctors must be inserted in special locations as

• injection/extraction region

• for colliders, in the collision region in order to

– monitor the beam position

– perform Beam Based Alignment

– measure the machine optics

http://www.mechanik.tu-darmstadt.de
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It is important to keep the closed orbit as small as possible for

• making good use of the available aperture;

• staying clear of unwanted non-linearities.

An example from the LHC (J. Wenninger, JUAS 2019)
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Dispersion

The dispersion, D(s), describes the dependence of the particle trajectory upon its

momentum. It originates from the bending magnets.

p>p0

p0 

X

s

In a closed ring, the periodic first order dispersion is the deviation wrt the design orbit

of a particle with an offset ∆p/p0=1. Therefore

z = zβ + zc.o. + Dz

∆p

p

http://www.mechanik.tu-darmstadt.de
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The equation of the periodic dispersion has the same form as the equation of the closed

orbit, the in-homogeneity being 1/ρ

D′′
z + KzDz =

1

ρ

The solution has the same form of the closed orbit:

D(s) =

√
β(s)

2 sinπQ

∫ s+L

s

dτ

√
β(τ )

ρ
cos [Q(π + ϕ(s)− ϕ(τ ))]

Particles with ∆p ̸=0 have a different path length:

L = L0+∆L = L0+

∮
ds

x

ρ
= L0+

∆p

p

∮
ds

D

ρ

Momentum compaction factor

αp ≡
dL

L
/
dp

p

ρ

x

ds dldΘ
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β-beating

We recall the equation for the β function used to disentangle the motion of the single

particles from the machine characteristics:

1

2
βzβ

′′
z −

1

4
β′2
z + β2

zKz = 1 (z = x, y)

with

Kx ≡
( 1

ρ2
+ K

)
and Ky ≡ −K

and

K(s) ≡
e

p

(∂By

∂x

)
x=y=0

Errors in the quadrupole strength lead to a β perturbation.
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A direct way a for finding the equation describing the perturbation in first approximation

consists in

• writing K = K0 + ∆K and β = β0 + ∆β;

• inserting those expressions in the β function equation;

• recognizing that β0 is the unperturbed solution to the unperturbed equation;

• keeping only the linear terms in ∆K and ∆β;

• using β0β
′′
0 + 2β2

0K0 = 2(1 + β′2
0 /4) (from the unperturbed equation);

• writing the derivatives wrt s in terms of ϕ (as shown when deriving the equation

for η=z/
√
β).

aIn the literature it is in general obtained by introducing a thin lens perturbation in the one turn

transport matrix.
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The β-beat equation, which looks awful when s is used, takes a simple and enlightening

form when ϕ is used

d2

dϕ2

(
∆β

β0

)
+ 4Q2

(
∆β

β0

)
= −2Q2β2

0∆K(ϕ)

It has the same form as the closed orbit equation for η ≡ z/
√
β with

Q→ 2Q

Q2β3/2F (ϕ)→ −
1

2
(2Q)2β2

0∆K(ϕ)

and we can use the results found for η

∆β

β0

(s) = −
1

2 sin(2πQ)

∫ L

0

ds̄ β∆K cos 2Q[π − |ϕ(s)− ϕ(s̄)|]

For one integrated gradient error, ∆Kℓ, at s = sk

∆β

β0

(s) = −
βk∆Kℓ

2 sin(2πQ)
cos 2Q[π − |ϕ(s)− ϕk|]
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∆β/β0(s) (beta-beat)

• oscillates with twice the betatron frequency and thus is sensitive to gradient error

harmonics near to 2Q→ true β-beat is reach in harmonics close to 2Q;

• is large when Q approaches a half integer.

Tune in presence of quadrupole error can be found from the definition

Q =
1

2π

∮
ds

β
=

1

2π

∮
ds

β0 + ∆β
≃ Q0−

1

2π

∮
ds

β0

∆β

β0

= Q0−
1

2π

∮
dµ

∆β

β0

with µ ≡ Q0ϕ.

For a localized gradient error∮
dµ

∆β

β0

=
βk∆Kℓ

2 sin(2πQ)

∮
dµ cos[2Qπ − 2|µ− µk|] =

1

2
βk∆Kℓ

∆Q = −
1

4π
βk∆Kℓ (tune shift)

The effect of more gradient errors add linearly.
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Chromaticity

We can make use of this result to easily find the equation of the (linear) chromaticity.

Particles with a momentum difference wrt the nominal one, experience different forces:

1

ρ
=

e

p
By and K =

e

p

(∂By

∂x

)
x=y=0

Using
1

p
=

1

p0 + ∆p
=

1

p0

[
1−

∆p

p0

+
(∆p

p0

)2

+ ...
]

and keeping the linear term only, it is

K = K0 + ∆K ≃ K0 −
∆p

p0

K0

'
&

$
%
↙ quadrupole error

Chromatic (linear) β-beating

1

∆p/p0

∆β

β
=

1

2 sin(2πQ)

∫ L

0

ds̄ βK0 cos 2Q[π − |ϕ(s)− ϕ(s̄)|]

The largest contribution comes from strong quadrupoles at large β.
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The tune shift due to a single quadrupole for a particle with momentum p0 + ∆p is

(∆Q)k =
1

4π
βk∆Kℓ = −

1

4π
βk

∆p

p0

K0ℓ

By integrating over the machine length we get the total tune change

∆Q = −
1

4π

∆p

p0

∮
dsβK0

The (natural) linear chromaticity is

ξ ≡
∆Q

∆p/p0

= −
1

4π

∮
dsβK0

The chromaticity is larger in large rings and the largest contributions come from

• quadrupoles at large β location;

• strong quadrupoles.
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• The negative natural chromaticity

drives the Head-Tail instability.

• Large chromaticity means that

there may be no stable optics for

off-momentum particles.

• Chromaticity leads to a spread of

the particle tunes. Particles with

tune close to a resonance a

nxQx + nyQy = p

(nz integer) may be lost.

adepending whether there are field driving

the resonance.

Working point diagram with resonances

up to 3d order.

 0
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We need one more building block: a quadrupole which strength depends linearly on

momentum!

Sextupole magnets placed in locations where Dx ̸=0 are exactly that.'

&

$

%

↙ quadrupole term

Bx = Sxy = S(Dx
∆p
p0

+ xβ)yβ = SDx
∆p
p0

yβ + Sxβyβ

By = 1
2
S(x2 − y2) = 1

2
S(Dx

∆p
p0

)2 + SDx
∆p
p0

xβ + 1
2
S(x2

β − y2
β)

The simplest correction scheme consists in placing sextupoles in the arcs, whereDx ̸=0,

∆Qx = 1
4π

∑NS
i=1 βx,iDx,iSiℓi

∆Qy = 1
4π

∑NS
i=1 βy,iDx,iSiℓi

Arranging the sextupoles into two families, the values of their strength, SF and SD, for

a given ∆Qx and ∆Qy are obtained by inverting a system of two equations ∆Qx

∆Qy

 =

 m11 m12

m21 m22

 SF

SD
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Sextupoles introduce also unwanted effects:

• The dipole-like term (Dx
∆p
p0

)2 (chromatic aberration) introduces 2d order disper-

sion.

• The terms 1
2
S(x2

β− y2
β) and Sxβyβ (geometric aberration). They drive 3d order

resonances, unless attention is paid to the phase advance between sextupoles of the

same family so that an overall cancelation occurs.

– In a non-linear machine not all amplitudes are stable: the maximum amplitude

that can circulate is no more determined by the beam pipe (physical aperture).

Computer codes are used to perform tracking and determine the dynamic aper-

ture.

For minimizing their strengths (and troubles) it is convenient to place the sextupoles

at location where Dx is large and β2
z ≫ βxβy so that the corrections are (almost)

orthogonal.
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Matrix fomalism

In practice we may consider the ring as made of piece-wise constant fields.

Example of Hill’s equation for a pure quadrupole.

x′′ + Kx = 0

y′′ −Ky = 0

where K=const. The equations are easily solved. For x

x = A cos
√
Ks + B sin

√
Ks for K > 0

x = A cosh
√
|K|s + B sinh

√
|K|s for K < 0

with

A = x(0)

B = x′(0)/
√
|K|

The quadrupole is horizontally focusing if K > 0, horizontally defocusing if K < 0.

The effect of the same quadrupole is inverted in the vertical direction.
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The solution may be expressed in matrix form.

For instance for a horizontally focusing quadrupole it is for x x

x′

 =

 cos
√
Ks sin

√
Ks√

K

−
√
K sin

√
Ks cos

√
Ks

 x0

x′
0


We notice that the matrix determinant is 1.

The one turn transport matrix, M(s+L, s), is obtained multiplying the single machine

elements matrices.

The motion is stable only if the eigenvalues of the one turn matrix are complex-

conjugates modulus 1. If the condition is satisfied, it is possible to define the Twiss

functions.

Relationship between matrix elements and Twiss functions:

M(s, s0) =

 √
β√
β0

(cos∆µ + α0 sin∆µ)
√
β0β sin∆µ

− 1√
β0β

[(α− α0) cos∆µ + (1 + α0α) sin∆µ]
√

β0√
β
(cos∆µ− α sin∆µ)


with ∆µ=µ(s)-µ(s0). The matrix determinant is 1. This is a consequence of the

matrix being symplectic. Any Hamiltonian system is symplectic.
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Starting for simplicity from a symmetry point where α0=0, the one-turn matrix is

M(s + L, s) =

 cos 2πQ β sin 2πQ

− 1
β
sin 2πQ cos 2πQ


The eigenvalues are indeed

λ± = e±i2πQ

The matrix formalism is useful for practical calculations.
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We may try building a closed ring! Quadrupole focusing in one plane are defocusing in

the other one: a sequence of horizontally (QF) and vertically focusing (QD) quadrupoles

are needed for overall focusing. The quadrupole layout depends on the purpose.

• FODO cells are very common

– inserting dipoles between

the quadrupoles, FODO

cells are convenient for

building the ring arcs.

• Light sources aiming to very

small e− beam sizes use more

sophisticated cells: Double

Bend Achromat, Triple Bend

Achromat...

-5
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-2  0  2  4  6  8  10

QFH B QD B QFH

s[m]

βx[m]
βy[m]
Dx[m]
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Insertions

Insertions are needed for

• Injection and possibly extraction.

• Accommodating RF cavities.

• Collimation.

• Connecting dispersive sections to dispersion-free ones (dispersion suppressor).

• Creating enough free space for experiments in colliders.

Crucial parameters for colliders:

– Energy in the Center of Mass.

For two ultra-relativistic particles colliding “head-on”: E′
1 + E′

2 = 2
√
E1E2

– Luminosity, L.
Rate of events with a given cross section, σ, is

R = L × σ
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Low β-insertions

Luminosity (head-on collisions):

L =
N1N2

A
fcoll ← collision frequency

↙
# of particles in beam 2

↘
# of particles in beam 1

↖
beam transverse area

The effective transverse area for Gaussian distributions, and assuming the two beams

have the same sizes, is

A = 4πσxσy

with σz =
√
βzϵz.
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If each beam contains nb bunches it is fcoll = nbfrev. Luminosity may be rewritten

as

↙↘
# particles/bunch

L =
1

4π

N1 N2

σ∗
xσ

∗
y

nbfrev

For maximizing the luminosity we can

• Push the bunch population to an instability limit.

• Minimize the emittance.

– For hadrons it means preserving the emittance (injection matching, avoid reso-

nances, etc) and beam cooling.

– For leptons, when emittance is dictated by synchrotron radiation: optics design.

• Minimize βz at the Interaction Point, the so-called β∗
z .

There are limitations to how small β∗ can be made.
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β function in a drift space:

β(s) = β0 − 2α0s + γ0s
2 α ≡ −1

2
β′

γ ≡ (1 + α2)/β

For small β0 and α0=0

β(s) ≈
s2

β0

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

-8 -6 -4 -2  0  2  4  6  8

IP

β[
m

]

s[m]

β(0)=15 cm
β(0)=1 cm

Quadrupole focal length

f ≈
1

Kℓq
= Lfree with 2Lfree = machine magnet-free space

β̂ ≈
L2

free

β∗
=

1

(Kℓq)2
1

β∗

Contribution to linear natural chromaticity:

∆Q ∝ β̂Kℓq =
β̂

Lfree

=
Lfree

β∗
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• Lfree should be as small as possible.

• The IR quadrupoles

– will be strong;

– their aperture must accommodate large beam transverse size;

– must be well aligned (closed orbit!);

– have good field quality (small multipoles);

• The bunch length must be not larger than β∗, as β strongly increases moving away

from the IP reducing luminosity (Hourglass effect).

http://www.mechanik.tu-darmstadt.de


42/51 P□i?⊖⟲⟳≫≪><

Example. Future Circular Collider e+e− ring uses ultra-flat beam.

K. Oide et al, (PRAB 19, 111005 (2016)

Optics βx βy ϵx ϵy

[mm] [mm] [nm] [pm]

45 GeV 150 0.8 0.3 1.0

80 GeV 200 1.0 0.8 1.7

Optics vertical orbit mplification factor

45 GeV all quads 665

(Jan.2018) w/o IRs quads 124

• The few IRs quadrupoles have a huge effect on the closed orbit.

• It is crucial to have near-by BPMs and correctors to compensate their effects locally.
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We have seen that strong quadrupoles at large β function values are the main

contributors to chromaticity.

Example. Future Circular Collider e+e− ring.

Optics ξnat
x ξnat

y

45 GeV all sexts off -361 -1540

IR setxs off +3.5 -1230

80 GeV all sexts off -359 -1331

IR setxs off +3 -1017

ξnat = − 1
4π

∮
ds β(s)K(s)
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A second limitation comes from beam-beam

effects: each beam acts on the counter-

rotating one as a (non-linear) lens. F

K

ρ

x

The incoherent beam-beam tune shift, χz, is the tune change for a particle at the center

of the distribution:

χz =
rcN

2πγrel

β∗
z

σ∗
z(σ

∗
x + σ∗

y)
rc classical radius of the particle

N #particles in the counter-rotating bunch

Imposing χx = χz ⇒
β∗
y

β∗
x

=
ϵy

ϵx

e+e−-colliders: ϵy ≪ ϵx ⇒ β∗
y ≪ β∗

x

Round beams (non radiating particles): β∗
x = β∗

y
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Low-β insertion chromaticity correction

In colliders where the IR chromaticity is not very

large, using sextupoles in the arcs is satisfactory.

For instance in (pre-upgrade) HERA-e, 3 families of

sextupoles/arc in the 600 FODO cells could be used

for correcting

• linear chromaticity

• chromatic β-beating at the IPs.

Relative energy spread: ≈1h@ 27 GeV.

Brinkmann-Willeke, HEACC 1986

This scheme is not adequate for highly chromatic machines.
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Example of a 1.5 TeV Muon Collider.

Design Parameters

Ebeam 750 GeV

Lenght 2.5 Km

Nb × Num. of muons/bunch 1 × 2 · 1012

ϵNx,y = βrelγrelϵx,y 25 µm

∆p/p 0.1 %

Average Luminosity 1.25×1034 cm−2 s−1

β∗
x, β

∗
y 1 cm

Number of IPs 2

beam-beam tune shift/IP 0.1

|αp| <1×10−4

-5
 0
 5

 10
 15
 20
 25
 30
 35

 0  50  100  150  200

s [m]

βx [km]
βy [km]

 115
 115.5

 116
 116.5

 117
 117.5

 118
 118.5

 119
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→ ∆p/p ≃ ±0.08 %

with a HERAe-like scheme.
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For improving the stability range, dipoles have been introduced close to the Final Focus

quads allowing local chromaticity correction. Montague chromatic functions Wx,y:

Wz ≡
√

A2
z + B2

z

Az ≡
∂α(0)

z

∂δp
− α(0)

z Bz Bz ≡
1

β
(0)
z

∂βz

∂δp
(z = x/y)m

↖∆p/p

dAz

ds
= 2Bz

dµ(0)
z

ds
− β(0)

z k and
dBz

ds
= −2Az

dµ(0)
z

ds

k ≡

+(K −DxS) (hor.) K ≡ quad. strength

−(K −DxS) (vert.) S ≡ sext. strength

• Az(s) becomes non-zero when going from the IP (Az=Bz=0) through the first

FF quad.

• Bz(s)=0 as long as dµ(0)
z /ds=0.

A sextupole close to the FF quads (large βz→dµ(0)
z /ds=0) corrects Az and keeps

Bz=0.
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Second order chromaticity

ξ(2)z =
1

8π

∫ C

0

ds
(
−kBz ± 2S

dD(0)
x

dδp

)
β(0)
z − ξ(1)z��

��
↖
lin. chrom.

→ chromatic functions Bx,y and dD(0)
x /dδp must be both compensated!

• With β̂y ≫ β̂x (focusing first in the horizontal plane)

– Wy is first corrected by a single sextupole at ∆µy ≈0 from IP and very small

βx (for normal sextupole it ensures that the effect on detuning with amplitude

and resonance driving terms are small, a consequence of H=ax3 − 3axy2).

– Wx is corrected with one sextupoles at ∆µx=mπ/2 from IP and βx ≫ βy;

∗ a “twin” sextupole at (pseudo)−I reinforces its FF chromatic β-wave cor-

rection, while canceling its aberrations.

• 2d order dispersion may be corrected by sextupoles at a low βx,y locations.
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Interaction region with a doublet FF with Lfree=6 m for Ebeam=750 GeV.
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(Y. Alexahin et al.)

#σz =
√
γEz/ϵN

• Momentum acceptance of ±1.2% exceeds requirement.

• DA (on energy) is ≈ 5 σ (ϵN⊥ 25 µm).
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