IPAC'24 - 15th International Particle Accelerator Conference

Contribution ID: 1917 Contribution code: WEPS26 Type: Poster Presentation

Results from extended range SRF cavity tuners tests for LCLS-II-HE

Wednesday, 22 May 2024 16:00 (2 hours)

The LCLS-II HE superconducting linac can produce multi-energy beams by supporting multiple undulator lines simultaneously. This could be achieved by using the cavity SRF tuner in the off-frequency detune mode. This off-frequency operation method was tested in 8 cryomodules at Fermilab at 2 K. In all the tests the tuners successfully achieved a frequency shift of -565±80 kHz from the 1.3 GHz value. This study discusses the cavity frequency during each stage of assembly from the cryomodule string to when they are finally tested at 2 K. Monitoring the cavity frequency from this initial stage contributed in reaching this large frequency shift. The specific procedures of tuner setting during assembly will be presented.

Footnotes

Funding Agency

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DE-AC02-76SF00515 with the U.S. Department of Energy, Office of Science, Office of High Energ

Paper preparation format

Word

Region represented

North America

Primary author: CONTRERAS-MARTINEZ, Crispin (Fermi National Accelerator Laboratory)

Co-authors: CRAVATTA, Andrew (Fermi National Accelerator Laboratory); HARTSELL, Brian (Fermi National Accelerator Laboratory); ROMANOV, Gennady (Fermi National Accelerator Laboratory); KALUZNY, Joshua (Fermi National Accelerator Laboratory); POSEN, Sam (Fermi National Accelerator Laboratory); KHABIBOULLINE, Timergali (Fermi National Accelerator Laboratory); ARKAN, Tug (Fermi National Accelerator Laboratory); PISCHALNIKOV, Yuriy (Fermi National Accelerator Laboratory)

Presenter: CONTRERAS-MARTINEZ, Crispin (Fermi National Accelerator Laboratory)

Session Classification: Wednesday Poster Session

Track Classification: MC7: Accelerator Technology and Sustainability: MC7.T07 Superconducting RF