

Contribution ID: 2154 Contribution code: SUPG063 Type: Poster Presentation

PIP-II laser beam profile monitor laser system

Sunday, 19 May 2024 16:00 (2 hours)

Fermilab is currently engaged in the development of an 800 MeV superconducting RF linac, aiming to replace its existing 400 MeV normal conducting linac. PIP-II is a warm front-end producing 2 mA of 2.1 MeV H-, followed by a sequence of superconducting RF cryomodules leading to 800 MeV. To mitigate potential damage to the superconducting RF cavities, PIP-II uses laser-based monitors for beam profiling via photoionization. This abstract provides an update on the project's beam profiling, focusing on advancements made since the initial prototype. The prototype profile monitor featured a high-repetition-rate, low-power fiber laser and fiber optic transport that was tested with a 2.1 MeV H- beam at the PIP-II Injector Test (PIP2IT) accelerator. Since then, the fiber laser and fiber transport have been upgraded to a diode laser based system and free-space optical transport. This highlights a significant evolution in the laser system, enhancing its efficiency and adaptability. This talk will focus on a variable pulse width drive laser system via gain-switching, and the stability of a free-space propagated optical beam. In addition, this presentation will also share findings related to transverse and longitudinal beam profile measurements given different laser profiles.

Footnotes

Funding Agency

This work was supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359

Paper preparation format

LaTeX

Region represented

North America

Primary author: LANDON, Parker (Fermi National Accelerator Laboratory)

Co-authors: FELLENZ, Brian (Fermi National Accelerator Laboratory); RUAN, Jinhao (Fermi National Accelerator Laboratory); THURMAN-KEUP, Randy (Fermi National Accelerator Laboratory); SCARPINE, Victor (Fermi National Accelerator Laboratory)

Presenter: LANDON, Parker (Fermi National Accelerator Laboratory)

Session Classification: Student Poster Session

Track Classification: MC6: Beam Instrumentation, Controls, Feedback, and Operational Aspects: MC6.T25 Lasers