

Contribution ID: 1079 Contribution code: THPR85 Type: Poster Presentation

Solid-state driven X-band linac for electron microscopy

Thursday, 23 May 2024 16:00 (2 hours)

Current transmission electron microscopes (TEM) accelerate electrons to 200-300 keV using DC electron guns with a nanoamp of current and very low emittance. However at higher voltages these DC sources rapidly grow in size, oftentimes several meters tall for 1 MeV microscopes. Replacing these electron guns with a compact linac powered by solid-state sources could dramatically lower cost while maintaining beam quality, thereby increasing accessibility. Utilizing compact high shunt impedance X-band structures ensures that each RF cycle contains at most a few electrons, preserving beam coherence. CW operation of the RF linac is possible with distributed solid-state architectures* which power each cavity directly with solid-state amplifiers which can now provide up to 100W of power at X-band frequencies. We present a demonstrator design for a prototype low-cost CW RF linac for high-throughput electron diffraction producing 200 keV electrons with a standing-wave architecture where each cell is individually powered by a solid-state transistor. This design also provides an upgrade path for future compact MeV-scale sources on the order of 1 meter in size.

Footnotes

O. Heid and T. Hughes. Proc. 25th International Linear Accelerator Conference, page THP068, 2011.
D. Nguyen et al. Proc. 9th International Particle Accelerator Conference (IPAC18), pp. 520-523 M.
A. K. Othman, E. A. Nanni, V. A. Dolgashev, S. Tantawi, and J. Neilson. Solid-state powered x-band accelerator. Technical report, SLAC National Accelerator Laboratory, 2016.

Funding Agency

This work was supported by the Department of Energy Contract No. DE-AC02-76SF00515

Paper preparation format

LaTeX

Region represented

North America

Primary author: DHAR, Ankur (SLAC National Accelerator Laboratory)

Co-authors: SY, Ann (SLAC National Accelerator Laboratory); PEQEUNO, Carlos (SLAC National Accelerator Laboratory); NANNI, Emilio (SLAC National Accelerator Laboratory); OTHMAN, Mohamed (SLAC National Accelerator Laboratory); TANTAWI, Sami (SLAC National Accelerator Laboratory)

Presenter: DHAR, Ankur (SLAC National Accelerator Laboratory)

Session Classification: Thursday Poster Session

Track Classification: MC8: Application of Accelerators, Technology Transfer, Industrial Relations, and Outreach: MC8.U09 Other Applications