

Contribution ID: 1683 Contribution code: THPR46 Type: Poster Presentation

FLASH proton therapy facility design with permanent magnets

Thursday, 23 May 2024 16:00 (2 hours)

We present a design of the proton FLASH radiation therapy facility using the Brag peak to be built at Stony Brook University Hospital at the Radiation Oncology Department. It includes an injector using a commercially available injector cyclotron (10-30 MeV), fixed field alternating (FFA) gradient beam lines, permanent magnet Fixed Field Alternating Gradient non-scaling variable transverse field fast-cycling synchrotron accelerator with unprecedented kinetic energy range between 10-250 MeV, and a permanent magnet delivery system the FFA gantry. This facility removes limitations of the present proton cancer therapy facilities allowing FLASH radiation to be performed with 40 Gy/s in 100 ms. This allows treatment with the FLASH therapy without magnet adjustments for any proton kinetic energy between 70-250 MeV. The proposal is based on already experimentally proven FFA concept at the Energy Recovery linac 'CBETA' built and commissioned at Cornell University.

Footnotes

Funding Agency

This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy

Paper preparation format

Region represented

North America

Primary author: TRBOJEVIC, Dejan (Brookhaven National Laboratory)

Co-author: BROOKS, Stephen (Brookhaven National Laboratory)Presenter: TRBOJEVIC, Dejan (Brookhaven National Laboratory)

Session Classification: Thursday Poster Session

Track Classification: MC8: Application of Accelerators, Technology Transfer, Industrial Relations,

and Outreach: MC8.A28 Medical Applications