IPAC'24 - 15th International Particle Accelerator Conference

Contribution ID: 862 Contribution code: THPG23

Type: Poster Presentation

Novel clock and trigger solutions with ultra-high precision delay to support time-resolved experiments at TPS

Thursday, 23 May 2024 16:00 (2 hours)

The TPS (Taiwan Photon Source) is a third generation 3 GeV synchrotron light source. Some beamlines use synchrotron pulses in conjunction with laser pulses for pump-probe experiments, which is a time-resolved experiment method for capturing the temporal evolution of the pumped process. Periodic X-ray pulses are provided by the synchrotron light source as detecting light (Probe), and laser pulses can be used as a pump to excite a target, which changes a certain property when excited. Pump-probe experiments re-quire a synchronized laser system to alter the delay time between X-ray pulses and laser pulses. It has been built a laser synchronizer and timing support system. One direct digital synthesizer (DDS) with fine delay adjustment can change the laser pump pulse relative to the X-ray pulse. The clock fanout buffer with output dividers provides the synchronized clocks required by the laser oscillator and laser source. An SBC (single-board computer) is employed as a control interface The software architecture is created using the EPICS framework, which is compatible with the TPS control system, and a GUI with the ability to adjust the time delay is created. The efforts will be described in this report.

Footnotes

Funding Agency

Paper preparation format

Word

Region represented

Asia

Primary author: LIAO, Jin-Kun (National Synchrotron Radiation Research Center)

Co-authors: WU, Chunyi (National Synchrotron Radiation Research Center); LEE, Demi (National Synchrotron Radiation Research Center); HU, Kuo Hwa (National Synchrotron Radiation Research Center); HSU, Kuo-Tung (National Synchrotron Radiation Research Center); CHENG, Yung-Sen (National Synchrotron Radiation Research Center)

Presenter: LIAO, Jin-Kun (National Synchrotron Radiation Research Center)

Session Classification: Thursday Poster Session

Track Classification: MC6: Beam Instrumentation, Controls, Feedback, and Operational Aspects: MC6.T04 Accelerator/Storage Ring Control Systems