IPAC'24 - 15th International Particle Accelerator Conference

Contribution ID: 408 Contribution code: WEPC84

Type: Poster Presentation

Comparison of WarpX and GUINEA-PIG for electron positron collisions

Wednesday, 22 May 2024 16:00 (2 hours)

As part of the Snowmass'21 planning exercise, the Advanced Accelerator Concepts community proposed developing multi-TeV linear colliders and considered beam-beam effects for these machines [1]. Such colliders operate under a high disruption regime with an enormous number of electron-positron pairs produced from QED effects. Thus, it requires a self-consistent treatment of the fields produced by the pairs, which is not implemented in state-of-the-art beam-beam codes such as GUINEA-PIG. WarpX is a parallel, open-source, and portable particle-in-cell code with an active developer community that models QED processes with photon and pair generation in relativistic laser-beam interactions [2]. However, its application to beam-beam collisions has yet to be fully explored. In this work, we benchmark the luminosity spectra, photon spectra, and the recently implemented pair production processes from WarpX against GUINEA-PIG in ultra-tight collisions and ILC scenarios. This is followed by a run-time comparison to demonstrate the speed-up advantage of WarpX. Ultimately, this work ensures a more robust modeling approach to electron-positron collisions, with the goal of scaling up to 15 TeV.

Footnotes

[1] T. Barklow et al. Journal of Instrumentation 18, P09022 (2023).

[2] L. Fedeli et al. 2022 SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer Society 2022.

Funding Agency

Supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231 and by the DOE under Contract DE- AC02-76SF005.

Paper preparation format

LaTeX

Region represented

Europe

Primary author: Mr NGUYEN, Bao (Imperial College of Science and Technology)

Co-authors: FORMENTI, Arianna (Lawrence Berkeley National Laboratory); VAY, Jean-Luc (Lawrence Berkeley National Laboratory); FEDELI, Luca (Laboratoire Interactions, Dynamiques et Lasers); LEHE, Remi (Lawrence Berkeley National Laboratory); GESSNER, Spencer (SLAC National Accelerator Laboratory)

Presenter: Mr NGUYEN, Bao (Imperial College of Science and Technology)

Session Classification: Wednesday Poster Session

Track Classification: MC5: Beam Dynamics and EM Fields: MC5.D10 Beam-Beam Effects Theory, Simulations, Measurements, Code Developments