

Contribution ID: 1742 Contribution code: WEPG71

Type: Poster Presentation

Hybrid RF photoinjector beam characterization with FET detectors

Wednesday, 22 May 2024 16:00 (2 hours)

RadiaBeam has recently built and commissioned a novel C-band photo injector for high brightness Inverse Compton Source. This photoinjector is capable of producing ultra-short femtoseconds electron 250 pC bunches producing up to 300 A of beam current while maintaining the transverse emittance at a submicron level. In this paper, we describe the beam characterization of this photoinjector using novel field effect transistors (FET) sub-THz detectors. FET detectors based on nanoscale semiconductor wires are passive devices and capable of detecting a very short and weak signal in THz and sub-THz reneges and suit well for beam characterization. By detecting the signal from the coherent transition radiation produced by the electron bunch passing through a thin aluminum foil we were able to characterize the longitudinal beam parameters. This work describes the system layout, experiment procedure, and test results of bunch length measurements.

Footnotes

Funding Agency

DOE project number DE-SC0022791; DOD project number HR001120C0072

Paper preparation format

Word

Region represented

North America

Primary author: KRAVCHENKO, Maksim (RadiaBeam)

Co-authors: AMOUDRY, Loïc (Université Paris-Saclay, CNRS/IN2P3, IJCLab); BURGER, Nathan (RadiaBeam); KUT-SAEV, Sergey (RadiaBeam); MUROKH, Alex (RadiaBeam Technologies); PRONIKOV, Alexey (RadiaBeam Technologies)

Presenter: KRAVCHENKO, Maksim (RadiaBeam)

Session Classification: Wednesday Poster Session

Track Classification: MC6: Beam Instrumentation, Controls, Feedback, and Operational Aspects:

MC6.T03 Beam Diagnostics and Instrumentation