

Contribution ID: 1328 Contribution code: WEPG81

Type: Poster Presentation

Single-shot determination of the Munich Compact Light Source's two-dimensional X-ray source profile based on a backprojection approach

Wednesday, 22 May 2024 16:00 (2 hours)

The Munich Compact Light Source (MuCLS) is a compact synchrotron source based on inverse Compton X-ray scattering. This effect produces brilliant quasi-monochromatic hard X-ray radiation with rather low electron energy (tens of MeV) by colliding these electrons head-on with a laser beam. Such sources are sufficiently compact to fit into a laboratory or industrial environment enabling a more widespread use of synchrotron techniques. Many of these techniques are affected detrimentally by a larger (projected) source size, e.g. X-ray phase contrast imaging. The more precisely the exact shape of the source is determined, the better can its effects be corrected for in the recorded data.

We experimentally evaluate a novel approach to obtain an accurate 2D X-ray source profile**. A hole in a strongly absorbing structure is used to record the edge-spread function azimuthally resolved in a single shot. The 2D source spot is retrieved from this data by taking the derivative of the edge-spread function and applying the filtered-backprojection algorithm of computed tomography. We discuss results obtained for the source shape and relate them to general performance parameters of the MuCLS.

Footnotes

• Eggl et al. Journal of Synchrotron Radiation 23, 1137 (2016) ** Guenther et al. Journal of Synchrotron Radiation 27, 1395 (2020) *** Di Domenico et al, Medical Physics 43, 294 (2016)

Funding Agency

We acknowledge financial support by the Centre for Advanced Laser Applications (CALA) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –project number 513827659.

Paper preparation format

LaTeX

Region represented

Europe

Primary author: GÜNTHER, Benedikt (Technical University of Munich)

Co-authors: FORSTER, Lennart (Technical University of Munich); DIEROLF, Martin (Technical University of Munich); ACHTERHOLD, Klaus (Technical University of Munich); PFEIFFER, Franz (Technical University of Munich)

Presenter: GÜNTHER, Benedikt (Technical University of Munich)

Session Classification: Wednesday Poster Session

Track Classification: MC6: Beam Instrumentation, Controls, Feedback, and Operational Aspects:

MC6.T03 Beam Diagnostics and Instrumentation