IPAC'24 - 15th International Particle Accelerator Conference

Contribution ID: 548 Contribution code: WEPC39

Type: Poster Presentation

Picometer scale emittance from plasmonic spiral photocathode for particle accelerator applications

Wednesday, 22 May 2024 16:00 (2 hours)

In this work we demonstrate the generation of a record low root mean square normalized transverse electron emittance of less than 30 pm-rad from a flat metal photocathode –more than an order of magnitude lower than the best the emittance that has been achieved from a flat photocathode. This was achieved by using plasmonic focusing of light to a sub-diffraction regime using plasmonic Archimedean spiral structures resulting in a ~40 nm root mean square electron emission spot. Such nanostructured electron sources exhibiting simultaneous spatio-temporal confinement to nanometer and femtosecond level along with a low mean transverse energy can be used for developing advanced electron sources to generate unprecedented electron beam brightness for various accelerator applications.

Footnotes

Funding Agency

This work is supported by the NSF Center for Bright Beams under award PHY-1549132. C.M.P. acknowledges US NSF Award PHY-1549132, the Center for Bright Beams and the US DOE SCGSR program.

Paper preparation format

LaTeX

Region represented

North America

Primary author: KACHWALA, Alimohammed (Arizona State University)

Co-authors: PIERCE, Christopher (Cornell University (CLASSE)); FILIPPETTO, Daniele (Lawrence Berkeley National Laboratory); MAXSON, Jared (Cornell University); MOEINI RIZI, Mansoure (Arizona State University); KARKARE, Siddharth (Arizona State University)

Presenter: KACHWALA, Alimohammed (Arizona State University)

Session Classification: Wednesday Poster Session

Track Classification: MC2: Photon Sources and Electron Accelerators: MC2.T02 Electron Sources