## IPAC'24 - 15th International Particle Accelerator Conference



Contribution ID: 1733 Contribution code: WEPS51

Type: Poster Presentation

# On-line helium mass flow monitoring system for SRF cavities at 2 K

Wednesday, 22 May 2024 16:00 (2 hours)

The Helium Flow Monitor System developed by Jefferson Lab and Hyperboloid LLC is designed to measure the health of cavities in a Cryomodule in real-time. It addresses the problem of unhealthy cavities with low Q0, which generate excess heat and evaporation from the 2 K super-fluid helium bath used to cool the cavities. The system utilizes a unique meter that incorporates superconducting elements for high-resolution measurements of increased evaporation from the Cryomodule while the accelerator is operating. It can also measure individual Cavity Q0s when the beam is turned off. The Linux-based control system is an integral part of this device, providing the necessary control and data processing capabilities. The system was integrated with a LabJack A/D (analog-to-digital)and D/A (digital-to-analog) converter, which provides the necessary input and output capabilities for the system.

#### Footnotes

## **Funding Agency**

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

## Paper preparation format

#### **Region represented**

North America

Primary author: JORDAN, Kevin (Thomas Jefferson National Accelerator Facility)

**Co-authors:** CHRISTIAN, Dakota (Thomas Jefferson National Accelerator Facility); CROKE, Gary (Thomas Jefferson National Accelerator Facility); BIALLAS, George (Hyperboloid LLC); TIEFENBACK, Michael (Thomas Jefferson National Accelerator Facility)

Presenter: JORDAN, Kevin (Thomas Jefferson National Accelerator Facility)

Session Classification: Wednesday Poster Session

**Track Classification:** MC7: Accelerator Technology and Sustainability: MC7.T07 Superconducting RF