IPAC'24 - 15th International Particle Accelerator Conference

Contribution ID: 1887 Contribution code: TUPS48

Type: Poster Presentation

Dielectric wakefield accelerators: tuning THz radiation via coherent Cerenkov radiation for biomedical applications

Tuesday, 21 May 2024 16:00 (2 hours)

The THz spectrum reveals distinctive vibrational and rotational modes, and when charged particle beams produce THz radiation, it becomes a promising source for generating narrowband, high-energy radiation. Particularly in dielectric wakefield accelerators, where a dielectric-lined channel is traversed by a relativistic electron beam, coherent Cerenkov radiation (CCR) is generated. The frequency and amplitude of CCR are dependent on structural geometry and drive beam parameters. Simulating a µm, pC driver beam in a dielectric wakefield structure yields longitudinal fields of MV/m, with a fundamental mode associated with a resonant peak corresponding to the process of demethylation in DNA. Achieving higher frequencies requires a thin dielectric layer or Bragg-like boundaries in the structure to constructively reinforce the fundamental frequency.

Footnotes

Funding Agency

This work was performed with the support of the US DOE, Division of HEP, under Contract No. DE-SC0009914, NSF PHY-1549132 CBB, DARPA under Contract N.HR001120C007.

Paper preparation format

LaTeX

Region represented

North America

Primary author: Dr YADAV, Monika (University of California, Los Angeles)

Co-authors: FUKASAWA, Atsushi (University of California, Los Angeles); NARANJO, Brian (University of California, Los Angeles); ANDONIAN, Gerard (University of California, Los Angeles); ROSENZWEIG, James (University of California, Los Angeles); WILLIAMS, Oliver (University of California, Los Angeles); LYNN, Walter (University of California, Los Angeles); SAKAI, Yusuke (University of California, Los Angeles)

Presenter: Dr YADAV, Monika (University of California, Los Angeles)

Session Classification: Tuesday Poster Session

Track Classification: MC6: Beam Instrumentation, Controls, Feedback, and Operational Aspects: MC6.A28 Medical Applications