IPAC'24 - 15th International Particle Accelerator Conference

Contribution ID: 1498 Contribution code: TUPR34

Type: Poster Presentation

Modeling of single-beam and multiple-beam klystrons by the TESLA-family of large-signal codes

Tuesday, 21 May 2024 16:00 (2 hours)

Klystrons and Multiple-Beam Klystrons (MBKs) are widely used or proposed to be used in accelerators as high-power RF sources. Development and optimization of klystron and MBK's designs is aided by the use of different simulation tools, including highly efficient large-signal codes. We present an overview of capabilities of the TESLA-family of 2.5D large-signal codes, which have been developed at the Naval Research Laboratory (NRL) and which are suitable for the accurate modeling of single-beam and multiple beam klystrons. TESLA algorithm does support proper treatment of 'slow'and 'reflected' particles, what enables accurate modeling of high-efficiency klystrons. Recently developed more general TESLA-Z algorithm is based on the impedance matrix approach and enabled accurate, geometry-driven large-signal modeling of devices with such challenging elements as multiple-gap cavities, filter-loading, couplers and windows. Finally, recent introduction of the reduced-order, 1.5D versions of the TESLA algorithms enabled much faster, but limited modeling options. Examples of applications of TESLA-family of codes to the modeling of advanced single-beam and MBK's will be presented.

Footnotes

Distribution Statement A. Approved for public release. Distribution unlimited.

Funding Agency

Work was supported by the U.S. Office of Naval Research

Paper preparation format

Word

Region represented

North America

Primary author: Dr CHERNYAVSKIY, Igor (Naval Research Laboratory)

Co-authors: VLASOV, Alexander (Naval Research Laboratory); ANTONSEN, Tom (University of Maryland)

Presenter: Dr CHERNYAVSKIY, Igor (Naval Research Laboratory)

Session Classification: Tuesday Poster Session

Track Classification: MC7: Accelerator Technology and Sustainability: MC7.T08 RF Power Sources