## IPAC'24 - 15th International Particle Accelerator Conference



Contribution ID: 1915 Contribution code: TUPG43

Type: Poster Presentation

# Light source top-up through direct generation of electron beam based on LPA technology

Tuesday, 21 May 2024 16:00 (2 hours)

Laser plasma acceleration (LPA) technology is advancing day by day, getting ready for user facility applications. LPA might be applicable to a generation of electron beams directly within the light-source storage-ring vacuum chamber. Typical injector of the light source facility consists of linac and synchrotron booster (or simply a full energy linac). It can be replaced by a laser plasma cell and a driving laser system that can generate multi-GeV electron beams through so-called self injection. The electron beam out of plasma cell has typically a large energy spread. In this application, however, we do not require small energy spread since the storage ring can accept off-energy electrons of up to  $\pm 5\%$  or so. It can also have a transverse angular acceptance of a few hundred micro radian. Therefore, a large fraction of generated electrons can be eventually accepted by the storage ring. LPA system, which replaces the conventional injector, may contribute to significant energy saving.

#### Footnotes

**Funding Agency** 

## Paper preparation format

LaTeX

#### **Region represented**

Europe

#### Primary author: AIBA, Masamitsu (Paul Scherrer Institut)

**Co-authors:** Dr MOLODOZHENTSEV, Alexander (Extreme Light Infrastructure); DEHLER, Micha (Paul Scherrer Institut)

Presenter: DEHLER, Micha (Paul Scherrer Institut)

Session Classification: Tuesday Poster Session

**Track Classification:** MC2: Photon Sources and Electron Accelerators: MC2.A05 Synchrotron Radiation Facilities