IPAC'24 - 15th International Particle Accelerator Conference

Contribution ID: 523 Contribution code: TUPC02

Type: Poster Presentation

Design of a two-cell C-band accelerator cavity with higher-order mode damping

Tuesday, 21 May 2024 16:00 (2 hours)

Higher-order mode (HOM) damping is essential for building large-scale facility linear accelerators, such as a linear collider, because of the need to reduce the wakefield strength inside the accelerating structure. We designed a C-band accelerator cavity with distributed coupling and thin HOM-damping waveguides oriented in the radial direction. It was proposed that nickel-chrome (NiCr) coating deposited on the surface of the thin waveguides will be used to increase the surface resistivity and to damp the HOMs. Recently, we designed a two-cell cavity to conduct a concise high power test that will help us understand the fabrication challenges for the cavity with NiCr HOM absorbers, and examine the performance of the NiCr coating under high-power conditioning. This presentation will report the detailed electromagnetic and engineering design of the cavity, the theoretical prediction of the cavity high-gradient performance, the status of fabrication, and plans for high-gradient testing.

Footnotes

Funding Agency

This research was funded by the U.S. Department of Energy through Los Alamos National Laboratory, under Contract No. 89233218CNA000001.

Paper preparation format

Region represented

North America

Primary author: XU, Haoran (Los Alamos National Laboratory)

Co-authors: KIM, Dongsung (Los Alamos National Laboratory); NANNI, Emilio (SLAC National Accelerator Laboratory); SIMAKOV, Evgenya (Los Alamos National Laboratory); BUSTOS, Gerald (Los Alamos National Laboratory); BARKLEY, Walter (Los Alamos National Laboratory); LI, Zenghai (SLAC National Accelerator Laboratory)

Presenter: XU, Haoran (Los Alamos National Laboratory)

Session Classification: Tuesday Poster Session

Track Classification: MC1: Colliders and other Particle and Nuclear and Physics Accelerators: MC1.A03 Linear Lepton Colliders