

Contribution ID: 1815 Contribution code: MOPS44 Type: Poster Presentation

3D theory of short-wavelength instabilities driven by space-charge

Monday, 20 May 2024 16:00 (2 hours)

Microbunching - or short-wavelength –instabilities are well-known for drastic reduction of the beam quality, its filamentation and strong amplification of the noise in a beam. Space charge and coherent synchrotron radiation (CSR) are the leading causes for such instability. In this paper we present rigorous 3D theory of such instabilities driven by the space-charge forces. We define the condition when our theory is applicable for an arbitrary accelerator system with 3D coupling. Finally, we derive a linear integral equation describing such instability and identify conditions it can be reduced to an ordinary second order differential equation

Footnotes

Funding Agency

Paper preparation format

Region represented

North America

Primary author: LITVINENKO, Vladimir (Stony Brook University)

Co-authors: WANG, Gang (Brookhaven National Laboratory); PETRUSHINA, Irina (State University of New York at Stony Brook); MA, Jun (Brookhaven National Laboratory); SHIH, Kai (Brookhaven National Laboratory); JING, Yichao (Brookhaven National Laboratory)

Presenter: LITVINENKO, Vladimir (Stony Brook University)

Session Classification: Monday Poster Session

Track Classification: MC5: Beam Dynamics and EM Fields: MC5.D05 Coherent and Incoherent Instabilities Theory, Simulations, Code Development