

Contribution ID: 1645 Contribution code: MOPR73 Type: Poster Presentation

Compact, quality-preserving energy booster for intense laser-plasma ion sources

Monday, 20 May 2024 16:00 (2 hours)

Ion beams from laser-driven plasma sources can provide ultra-short (10s of fs for 10s of MeV), ultra-low slice emittance (10s of nm), and high-charge (100s of pC) properties. Demonstrated maximum energies for laserion sources are just short of those needed for pivotal applications, such as proton tumor therapy. Here, a robust and energy-scalable concept is presented that could boost the energy of an ultra-intense ion bunch through multiple stages to 100s of MeV/u and even towards the relativistic regime, using identical plasma booster stages based on magnetic vortex acceleration. Electromagnetic, full-3D particle-in-cell simulations are used to demonstrate the capability to capture, accelerate, and preserve the quality of a high-charge (200 pC), 20 nm emittance proton bunch, where both source and booster stages could be realized with capabilities of existing laser facilities.

Footnotes

Preprint:

Marco Garten, Stepan S. Bulanov, Sahel Hakimi, Lieselotte Obst-Huebl, Chad E. Mitchell, Carl Schroeder, Eric Esarey, Cameron G. R. Geddes, Jean-Luc Vay, and Axel Huebl. "A Laser-Plasma Ion Beam Booster Based on Hollow-Channel Magnetic Vortex Acceleration", submitted (2023) https://arxiv.org/abs/2308.04745

Funding Agency

This material is based upon work supported by the Defense Advanced Research Projects Agency via Northrop Grumman Corporation. Partly supported by U.S. DOE SC. See comments for full list.

Paper preparation format

LaTeX

Region represented

North America

Primary author: HUEBL, Axel (Lawrence Berkeley National Laboratory)

Co-authors: BULANOV, Stepan (Lawrence Berkeley National Laboratory); HAKIMI, Sahel (Lawrence Berkeley National Laboratory); OBST-HUEBL, Lieselotte (Lawrence Berkeley National Laboratory); MITCHELL, Chad (Lawrence Berkeley National Laboratory); SCHROEDER, Carl (Lawrence Berkeley National Laboratory); ESAREY, Eric (Lawrence Berkeley National Laboratory); VAY,

Jean-Luc (Lawrence Berkeley National Laboratory); GARTEN, Marco (Lawrence Berkeley National Laboratory)

Presenter: HUEBL, Axel (Lawrence Berkeley National Laboratory)

Session Classification: Monday Poster Session

Track Classification: MC3: Novel Particle Sources and Acceleration Techniques: MC3.T01 Proton

and Ion Sources