

Contribution ID: 554 Contribution code: MOPC31

Type: Poster Presentation

ESTABLISHING A NEW CLASS OF HIGH-CURRENT ACCELERATOR-DRIVEN NEUTRON SOURCES WITH THE HBS PROJECT

Monday, 20 May 2024 16:00 (2 hours)

Accelerator-driven high brilliance neutron sources are an attractive alternative to the classical neutron sources of fission reactors and spallation sources to provide scientists with neutrons. A new class of such neutron facilities has been established referred to as High-Current Accelerator-driven Neutron Sources (HiCANS). The basic features of HiCANS are a medium-energy proton accelerator with of tens of MeV and up to 100 mA beam current, a compact neutron production and moderator unit and an optimized neutron transport system to provide a full suite of high performance, fast, epithermal, thermal and cold neutron instruments.

The Jülich Centre for Neutron Science (JCNS) has established a project to develop, design and demonstrate such a novel accelerator-driven facility termed High Brilliance neutron Source (HBS). The aim of the project is to build a versatile neutron source as a user facility. Embedded in an international collaboration, the HBS project offers the best flexible solutions for scientific and industrial users. The overall conceptual and technical design of the HBS as a blueprint for the HiCANS facility has been published in a series of recent reports.

The status and next steps of the project will be presented, focusing on the high-current linear accelerator and the proton beamline, including a novel multiplexer to distribute the proton beam to three different neutron target stations while adapting a flexible pulse structure.

Footnotes

Technical Design Report HBS Volume 1 –Accelerator 2023, Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag Jülich, ISBN: 978-3-95806-709-7, https://juser.fz-juelich.de/record/1016730

Funding Agency

Supported by the Innovation Pool project "High current accelerator systems for future HBS", Research Field Matter of the German Helmholtz Association (HGF).

Paper preparation format

LaTeX

Region represented

Europe

Primary author: Prof. LEHRACH, Andreas (Forschungszentrum Jülich GmbH)

Co-authors: SCHWAB, Alexander (Forschungszentrum Jülich); PODLECH, Holger (Goethe Universität Frankfurt); LI, Jingjing (Forschungszentrum Jülich GmbH); BAGGEMANN, Johannes (Forschungszentrum Jülich); LIST,

Julian (Helmholtz Institut Mainz); STORCH, Julius (Goethe Universität Frankfurt); VOIGT, Jörg (Forschungszentrum Jülich); KÜMPEL, Klaus (Goethe Universität Frankfurt); MISKI-OGLU, Maksym (GSI Helmholtzzentrum für Schwerionenforschung GmbH); Dr FELDEN, Olaf (Forschungszentrum Jülich GmbH); MEUSEL, Oliver (Goethe Universität Frankfurt); ZAKALEK, Paul (Forschungszentrum Jülich); GEBEL, Ralf (GSI Helmholtzzentrum für Schwerionenforschung GmbH); HANSLIK, Romuald (Forschungszentrum Julich GmbH); BRÜCKEL, Thomas (Forschungszentrum Jülich); GUTBERLET, Thomas (Forschungszentrum Jülich); RÜCKER, Ulrich (Forschungszentrum Jülich); BARTH, Winfried (GSI Helmholtzzentrum für Schwerionenforschung GmbH); BESSLER, Yannick (Forschungszentrum Juelich GmbH); MAUERHOFER, Eric (Forschungszentrum Jülich)

Presenter: KÜMPEL, Klaus (Goethe Universität Frankfurt)

Session Classification: Monday Poster Session

Track Classification: MC1: Colliders and other Particle and Nuclear and Physics Accelerators:

MC1.A08 Linear Accelerators