IPAC'23 - 14th International Particle Accelerator Conference

Contribution ID: 859 Contribution code: MOPM075

Type: Poster Presentation

Beam-based characterization of a non-linear injection kicker at BESSY II

Monday 8 May 2023 16:30 (2 hours)

Top-up operation at BESSY II is performed with average injection efficiencies of 98 %. However, the four-kicker bump and the septum, that form the present injection system, both contribute to a distortion of the stored beam with an amplitude of about two millimeters for several thousand turns after injection. A non-linear injection kicker (NLK) could be used to reduce the distortion due to the kicker bump by a factor of approximately 30 - a necessary condition for transparent injection. Studies with an NLK and optimized sextupole settings have shown that it is also possible to achieve injection efficiencies of up to 97 %. The NLK was characterized beambased with regards to the application of the NLK for BESSY II user operation, a possible injection method for BESSY III and to get a better understanding of the limiting effects of the injection efficiency. Additionally, measurements and simulations were compared.

Funding Agency

Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association

Footnotes

I have read and accept the Privacy Policy Statement

Yes

Primary author: GORA, Anny (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

Co-authors: Dr ABO-BAKR, Michael (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH); DIRSAT, Marc (Berliner Elektronenspeichering-Gesellschaft für Synchrotronstrahlung m.b.H.); REHM, Guenther (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH); RIES, Markus (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

Presenter: GORA, Anny (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

Session Classification: Monday Poster Session

Track Classification: MC2: Photon Sources and Electron Accelerators: MC2.T12: Beam Injection/Extraction and Transport