IPAC'23 - 14th International Particle Accelerator Conference

Contribution ID: 2752 Contribution code: SUPM059

Type: Poster Presentation

Ultra Thin Cs₃Sb Photocathodes With Anomalously High Quantum Efficiency

Sunday, 7 May 2023 16:00 (2 hours)

In this proceeding, we demonstrate the synthesis of epitaxial Cs_3Sb films with a high degree of crystallinity on silicon carbide substrates. Films less than 10 nm thin are grown in vacuum and exhibit percent level quantum efficiencies at 532 nm. We find a positive correlation between quantum efficiency and improved crystallinity of the photocathode film, particularly in the longer wavelengths of the visible spectrum. We present a model describing the optical interference effects observed in the SiC - Si substrate multilayer that enhance quantum efficiency of the thin film photocathodes by almost a factor of two at particular wavelengths. Additionally, we characterize the surface and bulk crystallinity of epitaxial Cs_3Sb films using both X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) in an endeavor to identify relationships between crystalline phases and photocathode performance.

Funding Agency

The Center for Bright Beams, NSF

Footnotes

I have read and accept the Privacy Policy Statement

Yes

Primary author: PENNINGTON, Chad (Cornell University (CLASSE))

Co-authors: ECHEVERRIA, Elena (Cornell University (CLASSE)); SMEDLEY, John (SLAC National Accelerator Laboratory); GAOWEI, Mengjia (Brookhaven National Laboratory); SAHA, Pallavi (Arizona State University); KARKARE, Siddharth (Arizona State University); MAXSON, Jared (Cornell University)

Presenter: PENNINGTON, Chad (Cornell University (CLASSE))

Session Classification: Student Poster Session

Track Classification: MC3: Novel Particle Sources and Acceleration Techniques: MC3.T02: Electron Sources