IPAC'23 - 14th International Particle Accelerator Conference

Contribution ID: 1392 Contribution code: THPM081

Type: Poster Presentation

Democratization of Particles Therapy: Design of The Most Compact Multiroom Particle Therapy Facility

Thursday 11 May 2023 16:30 (2 hours)

Particle therapy has advantages over conventional radiotherapy, but is not so widespread because of significant facility costs. In this work, we developed a compact, low-cost, expandable and high-performance beamline for a multi-room particle therapy facility. The accelerator is located at a lower level (underground) and the beamline guides the particles to treatment rooms located on the upper level of the floor. Such a compact beamline can rotate 3600 about the vertical axis to deliver beams to the treatment delivery rooms, which are then designed in a circular arrangement. The rotating beamline can then deliver beam to each treatment room, where the patient is treated in an upright position and rotated in front of a static treatment beam. The beamline characteristics have been calculated with BDSIM Monte Carlo simulations code. Simulation indicates that our beamline can transport full momentum spread ($\pm 5\%$) up to patient location allowing to have broadened Bragg peaks and ultra-high dose rates (>1000 Gy/s) to limit the field delivery time within a single breath-hold (5 second field delivery) even for large tumors. With this design, we can fit a single-room proton facility within an existing LINAC vault and a four-room facility within the area of a tennis court. We believe that such a high throughput and low investment cost facility could eventually allow to treat patients with particles at costs approaching that of conventional radiation therapy.

Funding Agency

This work was funded PSI CROSS founding scheme and partially funded by Swiss National Science Foundation (Grant No. 200822).

Footnotes

I have read and accept the Privacy Policy Statement

Yes

Author: MARADIA, Vivek (Paul Scherrer Institut)

Co-authors: LOMAX, Antony (Paul Scherrer Institut); WEBER, Damien Charles (Paul Scherrer Institut); MEER, David (Paul Scherrer Institut); COLIZZI, Isabella (Paul Scherrer Institut); PSOROULAS, Serena (Paul Scherrer Institut)

Presenter: MARADIA, Vivek (Paul Scherrer Institut)

Session Classification: Thursday Poster Session

Track Classification: MC8: Applications of Accelerators, Technology Transfer and Industrial Relations and Outreach: MC8.U01: Medical Applications