IPAC'23 - 14th International Particle Accelerator Conference

Contribution ID: 753 Contribution code: WEPL016

Type: Poster Presentation

High angular magnification for accessing structural information in Ultrafast Electron Diffraction

Wednesday, 10 May 2023 16:30 (2 hours)

Pulsed electron beams probe the dynamics of matter out of equilibrium with high spatial and temporal resolution. Ultrafast electron diffraction in particular is sensitive to sub-angstrom, sub-picosecond scale atomic motion. To collect all the structural information available in an electron diffraction pattern, the experimentalist must control the angular magnification onto the detector plane. We present a case study demonstrating the advantage of angular magnification: investigating periodic strain in moiré materials. Strain waves with 10 nm wavelength appear in diffraction as satellites closely clustered around brighter Bragg peaks. We describe a quadrupole lens triplet that varies the effective drift distance M_{12} between sample and detector from 80 cm to 8 m for our 140 keV electron beam, allowing us to zoom in on these moiré satellites. Three independently powered quadrupoles make it possible to eliminate astigmatism from a point-like probe. With the field strength achievable using quadrupole magnets, this magnification technique is also suitable for MeV beam energies.

Funding Agency

This work was supported by the U.S Department of Energy, awards DE-SC0020144 and DE-SC0017631, and U.S. National Science Foundation Grant PHY-1549132, the Center for Bright Beams.

Footnotes

I have read and accept the Privacy Policy Statement

Yes

Primary author: DUNCAN, Cameron (Cornell University (CLASSE))

Co-authors: KAEMINGK, Michael (Cornell University (CLASSE)); GORDON, Matthew (University of Chicago); LI, William (Brookhaven National Laboratory); BARTNIK, Adam (Cornell University (CLASSE)); MAXSON, Jared (Cornell University)

Presenter: DUNCAN, Cameron (Cornell University (CLASSE))

Session Classification: Wednesday Poster Session

Track Classification: MC5: Beam Dynamics and EM Fields: MC5.D01: Beam Optics Lattices, Correction Schemes, Transport