

Contribution ID: 586 Contribution code: WEPM024

Type: Poster Presentation

Accurate, quasi-3D modeling of single-beam and multiple-beam klystrons and iots by the Tesla-family of large-signal codes

Wednesday 10 May 2023 16:30 (2 hours)

Klystrons and IOTs are widely used in accelerators as high-power RF sources. Development and optimization of klystron and IOT designs is aided by the use of different simulation tools, including highly efficient large-signal codes. We present an overview of the advances in the code development and modeling using Naval Research Laboratory (NRL) set of TESLA-family of large-signal codes, suitable for the modeling of single-beam and multiple beam klystrons (MBKs) and IOTs. Original 2.5D large-signal algorithm of the code TESLA-was developed for the modeling of klystrons based on (relatively) high Q resonators and is applicable to the multiple-beam devices in an approximation of identical beams/beam-tunnels. Parallel extension of TESLA algorithm (code TESLA-MBenabled an accurate, quasi-3D modeling of multiple-beam devices with non-identical beams/beam-tunnels. Added into TESLA algorithm procedure for proper treatment of 'slow' and 'reflected' particlesenabled accurate modeling of high-efficiency klystrons and contributed into the development of klystron with 80% efficiency. Recently developed more general TESLA-Z algorithm*** is based on the impedance matrix approach and enabled accurate, geometry-driven large-signal modeling of devices with such challenging elements as multiple-gap cavities and filter-loading. Examples of applications of TESLA-family of codes to the modeling of advanced single-beam and multiple-beam klystrons and IOTs will be presented.

Funding Agency

Work was supported by the U.S. Office of Naval Research.

Footnotes

A.N. Vlasov, et al., IEEE TPS, vol. 30, no. 3, pp.1277-1291, June 2002.I.A. Chernyavskiy, et al., IEEE TED, vol. 54, no.6, pp.1555-1561, June 2007.I.A. Chernyavskiy, et al., IEEE TPS, vol. 36, no. 3, pp.670-681, June 2008.M. Read, T. Haberman, A. Jensen, R.L. Ives, 22nd IVEC, 2021.***I.A. Chernyavskiy et al., IEEE TED, vol. 64, no. 2, pp. 536-542, Feb. 2017.

I have read and accept the Privacy Policy Statement

Yes

Author: CHERNYAVSKIY, Igor (Naval Research Laboratory)

Presenter: CHERNYAVSKIY, Igor (Naval Research Laboratory)

Session Classification: Wednesday Poster Session

Track Classification: MC7: Accelerator Technology and Sustainability: MC7.T08: RF Power Sources