

Contribution ID: 1469 Contribution code: MOPL148 Type: Poster Presentation

Study and simulation of cryogenic bi-periodic accelerating structure with TM02 mode

Monday 8 May 2023 16:30 (2 hours)

To further enhance the accelerating gradient of accelerators, we designed a cryogenic C-band standing wave bi-periodic accelerating structure for the Shanghai Soft X-ray Free Electron Laser Facility (SXFEL). According to the low-temperature environment, material characteristics and technological conditions, the design is completed and it is decided to design the accelerating structure into a bi-periodic magnetic coupling structure. It is a 17-cell structure consisting of 9 accelerating cavities and 8 coupling cavities. To guarantee the symmetry of the field, the structure is doubly-fed. Operating with the $\pi/2$ mode standing wave, it is much less sensitive than the standing-wave structure of π -mode. Additionally, the microwave mode is TM02 in coupling cavities that are larger and even less sensitive than the traditional bi-periodic structure. The shape of the coupling cavity can be redesigned to make it tunable.

Funding Agency

Work was supported by the National Natural Science Foundation of China (No. 11975298) and the Alliance of International Science Organizations (ANSO-CR-KP-2020-16).

Footnotes

I have read and accept the Privacy Policy Statement

Yes

Primary author: GAO, Zihe (Shanghai Institute of Applied Physics)

Co-authors: WANG, Cheng (Shanghai Synchrotron Radiation Facility); FANG, Wencheng (Shanghai Syn-

chrotron Radiation Facility)

Presenter: FANG, Wencheng (Shanghai Synchrotron Radiation Facility)

Session Classification: Monday Poster Session

Track Classification: MC1: Colliders and other Particle Physics Accelerators: MC1.A08: Linear

Accelerators