FROM RESEARCH TO INDUSTRY

SUPERCONDUCTING CAVITIES AND CRYOMODULES FOR PROTON AND DEUTERON LINACS

G. DEVANZ

CEA-Irfu,Saclay

www.cea.fr

OUTLINE

- ESS
 - SRF linac
 - Spoke
 - Ellipticals
 - Cavities
 - cryomodules
 - Power couplers
 - Future tests
- SPIRAL2
 - Test status
- IFMIF-LIPAc
 - Cryomodule
 - HWR
 - Power couplers
 - Test stand

ESS - SRF LINAC

			352.21	MHz		704.42 MH	z	
Source +		RFQ			ookes 🔸 Mediu	m → ← ım β →	High $\beta \rightarrow \text{HEB}$	T & Contingency
۲5 keV		ک 3.6 MeV			216 MeV	561 MeV	ழ் 2000 MeV	
Requirements	Spoke	Medium	High	See	M. Eshra	qi THIC	DA01	
Frequency (MHz)	352.21	704.42	704.42	-				_
Geometric beta	0.50	0.67	0.86	_	Beam p	ower (MW)	5
Nominal Accelerating gradient (MV/m)	g 9.0	16.7	19.9	_	beam cu	urrent (mA)	62.5
Epk (MV/m)	39	45	45	_	Linac energy (GeV)		2	
Bpk/Eacc (mT/MV/m)	<8.75	4.79	4.3	_	Beam p	ulse ler	ngth (ms)	2.86
Epk/Eacc	<4.38	2.36	2.2	_	Repetitio	on rate	(Hz)	14
Iris diameter (mm)	50	94	120	-				
RF peak power (kW)	335	1100	1100	-		Nu	m. of CMs	s Nur
$G\left(\Omega ight)$	130	196.63	241					cavi
$Max R/Q (\Omega)$	427	394	477	Spoke			13	
Qext	2.85 10 ⁵	7.5 10 ⁵	7.6 10 ⁵	6-cell r	nedium β		9	
Q0 at nominal gradient	1.5 109	> 5 10 ⁹	> 5 10 ⁹	5-cell h	nigh β		21	

FROM RESEARCH TO INDUSTRY

DESIGN AND PROTOTYPING OF THE SPOKE CRYOMODULE

- Ceramic disk, 100 mm diameter
- 400 kW peak power
- Antenna & window water cooling
- Outer conductor cooled with Lhe
- Doorknob transition from coaxial to ½ height WR2300 waveguide
 4 prototypes under fabrication
 - (delivery in early October 2014)

Double Spoke SRF Cavities

- Double spoke cavity (3-gaps), 352.2 MHz, β=0.50
- Goal: Eacc = 9 MV/m [Bp= 72 mT; Ep = 39 MV/m]
- 4 mm (nominal) Niobium thickness
- Titanium Helium tank, Ti stiffeners
- Lorentz detuning coeff. : -4.4 Hz/(MV/m)²
- Tuning sentivity $\Delta f / \Delta z = 128 \text{ kHz/mm}$
- 3 prototypes under fabrication (delivery sept & oct 2014)

Poster

THPP078

PAGE 5

Cold tuning system

- Slow tuner (stepper motor): Max tuner stroke: 1.28 mm Max tuning range: 170 kHz Tuning resolution: 1.14 Hz
- Fast tuning by 2 piezos actuators Noliac 50x10x10 or PI 36x10x10 mm Applied voltage up to +/- 120 V Estimated tuning range: ~ 1 kHz

• 2 prototypes already fabricated LINAC 2014 – G. DEVANZ COURTESY S. BOUSSON

Cea 704.42 MHZ ELLIPTICAL CAVITIES

	Medium	High	
Geometrical beta	0.67	0.86	
Number of cells	6	5	
Length (mm)	1259	1316	
Nominal Accelerating gradient (MV/m)	16.7	19.9	
Nominal Accelerating Voltage (MV)	14.3	18.2	
Q ₀ at nominal gradient	> 5e9		
Cavity dynamic heat load (W)	4.9	6.5	
Q _{ext}	7.5 10 ⁵	7.6 10 ⁵	
Iris diameter (mm)	94	120	
Cell to cell coupling k (%)	1.2	1.8	
π and 5 π /6 (or 4 π /5) mode separation (MHz)	0.53	1.2	
E _{pk} /E _{acc}	2.35	2.2	
B _{pk} /E _{acc} (mT/(MV/m))	4.78	4.3	
Maximum. r/Q (Ω)	397	477	
Optimum β	0.705	0.92	
G (Ω)	197	241	
Static KL (Hz/(MV/m) ²) with tuner	-2	-1	

- No HOM couplers
- Cold magnetic shield over the He jacket (target 1.4 μ T)
- Use as far as possible tesla technology material (Ti tank, Al gaskets)

Cea HIGH BETA PROTOTYPES

Field flatness:92%

FNP 1-1-2.4 etching performed on BCP/EP cabinet

ELLIPTICAL SECTION CRYOMODULE

Cea EU PRESSURE VESSELS – PED 97/23/EC

- Most critical « vessel » is the Helium volume between cavity and helium jacket (many welds, exotic materials)
- Example : XFEL cavities follow Cat. IV related verification units (B1,B,F,G modules)

→If possible, favor lowest categories

 ESS spoke and ellipticals CM have been designed in order to have PS . V < 50 for the Helium vessel (Art. 3 § 3)

> →Design has to follow « Sound engineering practice »

PS = « Maximum Allowable Pressure », relative to atmospheric pressure (barg)

FROM RESEARCH TO INDUST

Cea FUNDAMENTAL POWER COUPLER (FPC)

New design of the doorknob waveguide transition including a HV bias capacitor with RF trap

- Saclay HIPPI power coupler (KEK-type window) tested to 1.2 MW, 10% duty factor
- ESS requirements 1.1 MW, 4% duty factor
- RF test stand is being refurbished for pulse length of 3 ms
- Plan is to process 4 FPCs for the cryomodule, with 2 spares

PAGE 10

Test of the HIPPI power coupler a b=0.5 5-cell cavity at 1.8 K, full reflection, horizontal cryostat

Spoke :

- RF power test of the IPNO cryomodule at Upsala University
- Ellipticals :
 - 6 medium β cavities : manufacturing, preparation and vertical test
 - 4 power couplers + 2 spares : manufacturing and conditioning
 - Manufacturing of the cryomodule components
 - Assembly of the Medium β cavities technical demonstrator (MECCTD)
 - RF power test at saclay in CM test bunker
 - Repeat with high β cavities technical demonstrator (HECCTD) re-using the MECCTD components

FROM RESEARCH TO INDUSTRY

Cea SPIRAL 2 - SRF LINAC

Cea gwr and cm performance

Test transport Saclay-Ganil-Saclay: No performance degradation

- All cavities above specifications
- 8/12 low β CMs tested
- Test transport Saclay-Ganil-Saclay
- 5/7 high β CMs tested

MORE on cryomodule performance : P.-E. Bernaudin

THIOB03 next session

FROM RESEARCH TO INDUST

IFMIF/EVEDA

Objective of the International Fusion Material Irradiation Facility: characterization of materials with intense neutrons flux (10¹⁷ n/s) for the future Fusion Reactor DEMO (~150 dpa)

The Engineering Validation and Engineering Design Activities (EVEDA) aims to validate the key technologies

The LIPAc cryomodule is developped by CEA with Ciemat (SC solenoïd package, coupler processing)

FROM RESEARCH TO INDUSTR

Cea LIPAC CRYOMODULE

Contains 8 HWR + 8 SC solenoïd packages (solenoïd, steerers, BPM)

Cea LIPAC CRYOMODULE

LIPAC HWRS

Parameter	Value	Unit
Frequency	175	MHz
Maximum r/Q	150	Ohm
Optimum beta	0.11	
Design beta	0.094	
r/Q @ design beta	140	Ohm
Epk/Eacc	4.8	
Bpk/Eacc	11	mT/(MV/m)
Nominal Eacc	4.5	MV/m
Nominal Qo	5 10 ⁸	

After plunger tuner removal prototype P02 performance exceed specifications

The original cavity design includes a superconducting plunger tuner

Ε

LINAC 2014 – G. DEVANZ

Η

- Disengagement system required for thermal transcients
- Displacement of each beam port is 0.3 mm (8000 N compressive force) \rightarrow detuning of -78 kHz

FROM RESEARCH TO INDUSTR

Cea COUPLER PROTOTYPE – HIGH POWER RF TEST

Design : 200 kW CW @ 175 MHz Maximum forward power on LIPAc : 70kW

Conditioning at Ciemat:

- A pair of prototypes assembled in clean room on a test box
- Baking 170°C 100 hr
- Travelling wave up to 100kW CW: done
- Standing wave up to 100kW CW : done for most critical positions of Epk
- \rightarrow couplers design is validated for the LIPAc

LINAC 2014 - G. DEVANZ

IFMIF

Recent decision to test the full cavity package (HWR + power coupler + tuner) before the LIPAc cryomodule assembly

Current horizontal test cryostat Cryholab too small Built a satellite as a simple top-loading cryostat

- Uses internal cryholab cryogenic circuits and components
- Includes its thermal shield and cryo safety devices
- Equiped with a magnetic shield
- HWR, coupler and tuner are tested in CM position
- RF power required 30 kW CW

New ISO7+ISO5 clean room required for ESS cavity string assembly, will be used for SPIRAL2 last CM assembly, and ifmif HWR preparation

Thank you for your attention

